INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA GOIANO - CAMPUS RIO VERDE DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS - GRADUAÇÃO EM CIÊNCIAS AGRÁRIAS - AGRONOMIA

CARACTERIZAÇÃO E SELEÇÃO DE HÍBRIDOS INTRAESPECÍFICOS DE *Brachiaria decumbens* PARA OS COMPONENTES DA PRODUÇÃO DE SEMENTES

Autora: Lenise Castilho Monteiro

Orientadora: Prof.^a Dr.^a Jaqueline Rosemeire Verzignassi

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA GOIANO - CAMPUS RIO VERDE DIRETORIA DE PESQUISA E PÓS - GRADUAÇÃO PROGRAMA DE PÓS - GRADUAÇÃO EM CIÊNCIAS AGRÁRIAS - AGRONOMIA

CARACTERIZAÇÃO E SELEÇÃO DE HÍBRIDOS INTRAESPECÍFICOS DE *Brachiaria decumbens* PARA OS COMPONENTES DA PRODUÇÃO DE SEMENTES

Autora: Lenise Castilho Monteiro Orientadora: Prof.^a Dr.^a Jaqueline Rosemeire Verzignassi

> Dissertação apresentada como parte das exigências para obtenção do título de MESTRE em Ciências Agrárias Agronomia, no Programa de Pós-Graduação em Ciências Agrárias Agronomia do Instituto Federal de Educação, Ciência e Tecnologia Goiano -Área Campus Rio Verde de concentração fisiologia, bioquímica e póscolheita de produtos vegetais.

M775c Monteiro, Lenise Castilho

Caracterização e seleção de híbridos intraespecíficos de *Brachiaria decumbens* para os componentes da produção de sementes / Lenise Castilho Monteiro. – Rio Verde, GO: Instituto Federal de Educação, Ciência e Tecnologia Goiano, 2015.

71 f.: il.

Dissertação (Mestrado em Ciências Agrárias) – Instituto Federal de Educação, Ciência e Tecnologia Goiano, 2015.

Orientador: Prof.^a Dr.^a Jaqueline Rosemeire Verzignassi

1. Fenologia. 2. Apoximia. 3. Forrageiras - melhoramento. 4. Pastagem I. Monteiro, Lenise Castilho. II. Título.

CDD (21) 633.202

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA GOIANO - CAMPUS RIO VERDE DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS - GRADUAÇÃO EM CIÊNCIAS AGRÁRIAS - AGRONOMIA

CARACTERIZAÇÃO E SELEÇÃO DE HÍBRIDOS INTRAESPECÍFICOS DE *Brachiaria decumbens* PARA OS COMPONENTES DA PRODUÇÃO DE SEMENTES

Autora: Enga. Agra. Lenise Castilho Monteiro Orientadora: Prof.^a Dr.^a Jaqueline Rosemeire Verzignassi

TITULAÇÃO: Mestre em Ciências Agrárias-Agronomia - Área de concentração fisiologia, bioquímica e pós-colheita de produtos vegetais.

APROVADA em 29 de Maio de 2015.

Dr. Sanzio Carvalho Lima Barrios Avaliador Externo Embrapa Gado de Corte Prof.^a Dr.^a Juliana Sales Avaliador Interno IF Goiano/RV

Prof.^a Dr.^a Jaqueline Rosemeire Verzignassi Presidente da Banca Embrapa Gado de Corte

AGRADECIMENTOS

A Deus, pela força e alimento superiores em todos os momentos.

Aos meus pais Silvio e Nilce Luzia, pela vida, amor e educação dados de forma gratuita.

Às minhas irmãs Laíza e Leiza, pelo carinho, confiança e estímulo depositados.

Aos professores Frederico, Allan, Juliana e Osvaldo, pela paciência e contribuição na formação pessoal e profissional.

Aos amigos Camila, Karine, Alisson, Aline, Anne Caroline, Gleiciane, Janaína, Cláudia, Natália Ajala, Christian, Ivanda e Antonio Flávio, pela força, trabalho e momentos de descontração.

À minha orientadora Jaqueline, pelo incentivo ao ingresso no programa de pósgraduação, orientação, paciência e amizade.

Ao meu Coorientador Sanzio Barrios, pelo auxílio nas análises genéticas. A minha Coorientadora Juliana Sales, pelo apoio.

Aos integrantes da Equipe de Tecnologia e Produção de Sementes de Forrageiras Tropicais da Embrapa Gado de Corte, especialmente o Sr. Luiz de Jesus, Hugo Corado e Vagner Martins, pela grande contribuição na condução dos experimentos.

À Embrapa Gado de Corte, Fapeg, CNPq, Fundect, Unipasto e Fundapam.

Ao Instituto Federal Goiano - Campus Rio Verde, pela oportunidade de mais um nível de formação.

BIOGRAFIA DO AUTOR

É natural de Aquidauana - MS, filha de Silvio Alcântara Monteiro e Nilce Luzia Castilho Monteiro. Em 2008, ingressou na Universidade Estadual do Mato Grosso do Sul de Aquidauana – MS, cursando a graduação em Agronomia e recebendo a titulação no ano de 2012. Nesse mesmo ano, ingressou na Embrapa Gado de Corte, como estagiária no Laboratório de Tecnologia e Produção de Sementes de Forrageiras Tropicais. Em 2013, ingressou no Programa de Pós-Graduação em Ciências Agrárias - Agronomia do Instituto Federal Goiano - Campus Rio Verde, em nível de mestrado.

ÍNDICE

	Página
ÍNDICE DE TABELAS	v
ÍNDICE DE APÊNDICES	viii
ÍNDICE DE FIGURAS	ix
LISTA DE SÍMBOLOS, SIGLAS E ABREVIATURAS	X
RESUMO	xii
ABSTRACT	xiv
1 INTRODUÇÃO GERAL	05
1.1 Referências bibliográficas	08
2 OBJETIVO	10
3 CAPÍTULO I Caracterização e seleção de híbridos intraespecíficos de	
Brachiaria decumbens para produção de sementes	11
RESUMO	11
ABSTRACT	12
3.1Introdução	14
3.2Material e métodos	15
3.3Resultados e discussão	23
3.4 Conclusões	49
3.5 Referências bibliográficas	50
4 APÊNDICES	53

ÍNDICE DE TABELAS

	Página
CAPÍTULO I Caracterização e seleção de híbridos intraespecíficos de	
Brachiaria decumbens para produção de sementes	
TABELA 1. Resultados de análise química do solo para macronutrientes	
(2012)	17
TABELA 2. Resultados de análise química do solo para micronutrientes (2012)	17
TABELA 3. Resultados de análise química do solo para macronutrientes	
(2013)	17
TABELA 4. Resultados de análise química do solo para micronutrientes	10
(2013)TABELA 5. Data de início da degrana (ID) de híbridos intraespecíficos de <i>B</i> .	18
decumbens, em plantas de segundo ano de produção. Campo Grande, 2014	23
TABELA 6. Épocas de início do florescimento (IF), pleno florescimento (PF),	23
início da degrana (ID) e final da degrana (FD) de híbridos intraespecíficos de	
B. decumbens, durante o segundo ano de produção. Campo Grande, 2014	24
TABELA 7. Análise de deviance (ANADEV) para peso de sementes puras	
(SP), peso de sementes vazias (EV) e germinação (G%) para genótipos	
avaliados no primeiro ano de produção	29
TABELA 8. Análise de deviance (ANADEV) para peso de sementes puras	
(SP), peso de sementes vazias (EV), número de sementes degranadas (NSD),	
número de pedicelos (NP) e número de primórdios de sementes (PRIM) dos	20
coletores durante o segundo ano de produção	30
TABELA 9. Análise de deviance (ANADEV) para número de perfilhos reprodutivos (PR), número de perfilhos vegetativos (PV), peso de sementes	
colhidas (SMT), germinação (G%) e peso de mil sementes (PMS) nos	
canteiros para genótipos avaliados no segundo ano de produção	32
TABELA 10. Valores genotípicos preditos (BLUP) dos 44 melhores híbridos	3 2
(Gen.), média fenotípica (M. F.), limite inferior do intervalo de confiança	
(LI), limite superior do intervalo de confiança (LS) e ganho de seleção (GS%	
em 30, 20 e 10% dos melhores) quanto ao peso de sementes puras (SP), peso	
de sementes vazias (EV) germinação (G%) para híbridos de B. decumbens no	
primeiro ano de produção	34
TABELA 11. Valores genotípicos preditos (BLUP) dos melhores híbridos	
(Gen.), média fenotípica (M. F.), limite inferior do intervalo de confiança	
(LI), limite superior do intervalo de confianca (LS) e ganho de seleção (GS%)	

	ar) de
produção	•••
TABELA 12. Valores genotípicos preditos (BLUP) dos melhores híbrido	
(Gen.), média fenotípica (M. F.), limite inferior do intervalo de confianc	
(LI), limite superior do intervalo de confiança (LS) e ganho de seleção (GS	
em 30, 20 e 10% dos melhores) quanto ao número de pedicelos (NP)	
número de primórdios de sementes (PRIM) em relação à cv. Marandu (Ma	
	de
produção	•••
(Gen.), média fenotípica (M. F.), limite inferior do intervalo de confiano (LI), limite superior do intervalo de confiança (LS) e ganho de seleção (GS	•
em 30, 20 e 10% dos melhores) quanto ao número de perfilhos reprodutivo	
(PR), número de perfilhos vegetativos (PV) e peso de sementes puras (SP) e	
relação a cv. Marandu (Mar) para híbridos de <i>B. decumbens</i> nos canteiros i	
segundo ano de produçãosegundo ano de produção	
TABELA 14. Valores genotípicos preditos (BLUP) dos melhores híbrido	
(Gen.), média fenotípica (M. F.), limite inferior do intervalo de confiance	
(LI), limite superior do intervalo de confiança (LS) e ganho de seleção (GS	•
em 30, 20 e 10% dos melhores) quanto ao peso de sementes colhidas (SMT	
germinação (G%) e peso de mil sementes (PMS) em relação à cv. Maranc	
(Mar) para híbridos de <i>B. decumbens</i> avaliados nos canteiros no segundo ar	
de produção	
TABELA 15. Análise de deviance (ANADEV) para número de sementes p	or
inflorescência (NSIT), número de sementes por racemo (NSR), número de	de
racemos (NRAC), comprimento dos racemos (CR) e comprimento d	as
inflorescências (CI) para híbridos intraespecíficos de B. decumbens no	
canteiros no segundo ano de produção	
TABELA 16. Valores genotípicos preditos (BLUP) dos melhores híbrido	
(Gen.), média fenotípica (M. F.), limite inferior do intervalo de confiance	
(LI), limite superior do intervalo de confiança (LS) e ganho de seleção (GS	
em 30, 20 e 10% dos melhores) em relação à cv. Marandu (Mar) quanto	
número de semente por inflorescência (NSIT), número de sementes (NSIT), número	
racemo (NSR) e número de racemos (NRAC) para híbridos de B. decumber	
avaliados nos canteiros no segundo ano de produção	
TABELA 17. Valores genotípicos preditos (BLUP) dos melhores híbrido (Gen.), média fenotípica (M. F.), limite inferior do intervalo de confiando	
(LI), limite superior do intervalo de confiança (LS) e ganho de seleção (GS)	•
em 30, 20 e 10% dos melhores) em relação a cv. Marandu quanto	
comprimento dos racemos (CR) e comprimento das inflorescências (CI) pa	
híbridos de B. decumbens avaliados nos canteiros no segundo ano o	
produção	
Tabela 18. Peso de sementes puras (SP) e peso de sementes vazias (EV) o	
canteiro para híbridos intraespecíficos de B. decumbens avaliados durante	
segundo ano de produção	
Tabela 19. Resultados de correlação fenotípica entre pureza física (Pureza%	
número de sementes degranadas (NSD), número de pedicelos (NP), número	
de primórdios de sementes (PRIM), número de perfilhos reprodutivos (PR	

número de perfilhos vegetativos (PV), peso de sementes puras (SP),	
viabilidade pelo teste de tetrazólio (TZ), germinação (G%), peso de mil	
sementes (PMS), número de racemos (NRAC), peso de sementes vazias (EV)	
e peso de sementes colhidas (SMT) para híbridos de Brachiaria decumbens,	
avaliados nos canteiros durante o segundo ano de produção	48

ÍNDICE DE APÊNDICES

	Página
CAPÍTULO I Caracterização e seleção de híbridos intraespecíficos de Brachiaria decumbens para produção de sementes	
APÊNDICE A. Valores de peso de sementes puras (SP), peso de sementes vazias (EV), pureza física (Pureza) e germinação (G%) de híbridos de <i>B. decumbens</i> avaliados no primeiro ano de produção	54
APÊNDICE B. Peso de sementes puras (SP), pureza física (Pureza), peso de sementes vazias (EV), número de sementes degranadas (NSD); número de pedicelos (NP) e número de primórdios de sementes (PRIM) de híbridos de <i>B. decumbens</i> avaliados nos coletores de sementes avaliados no segundo ano de produção	55
APÊNDICE C. Número de perfilhos reprodutivos (PR), número de perfilhos vegetativos (PV), pureza física (Pureza), viabilidade pelo teste de tetrazólio (TZ), germinação (G%), peso de mil sementes (PMS), número de racemo (NRAC) e peso de sementes colhidas de híbridos de <i>B. decumbens</i> avaliados nos canteiros durante o segundo ano de produção.	
(2014)	56
produção	57
produção	58

ÍNDICE DE FIGURAS

Pá CAPÍTULO I Caracterização e seleção de híbridos intraespecíficos de Brachiaria decumbens para produção de sementes	igina
FIGURA 1. Precipitação e precipitação máxima, temperaturas (média, média	
mínima e média máxima) e umidade relativa do ar (média, mínima e máxima). Campo Grande, 2013 e 2014	16
FIGURA 2. Coletores de sementes instalados na parcela (A). Inflorescências no interior do coletor (B)	18
FIGURA 3. Inflorescências de híbridos de <i>B. decumbens</i> . Esquema para avaliação: A – Número de sementes nos racemos (NSR). B - Comprimento dos	
racemos (CR). C - Comprimento das inflorescencias (CI)	19
durante o período de compreendido entre início do florescimento (IF), pleno florescimento (PF), início da degrana (ID) e final da degrana (FD) de híbridos de	
B. decumbens, no segundo ano produção	26
FIGURA 5. Médias semanais de precipitação (mm) e de temperatura (°C) durante o período de compreendido entre o corte, início do florescimento (IF),	
pleno florescimento (PF) e data de colheita (DC) de híbridos de B. decumbens,	
no segundo ano de produção	27

LISTA DE SÍMBOLOS, SIGLAS E ABREVIATURAS

Acc - acurácia da seleção de genótipos, assumindo ausência de perda de parcelas

ANADEV - Análise de deviance

BLUP - Valores genotípicos preditos

CI - Comprimento das inflorescências

Comp. Var. - Componente de variância

CR - Comprimento dos racemos

EV - Peso de sementes vazias

FD - Épocas de final da degrana

Gen. - Genótipos

G% - Germinação

GS – Ganho de seleção

h²g - herdabilidade de parcelas individuais no sentido amplo

h²mc - herdabilidade entre médias de genótipos, assumindo ausência de perda de parcelas

ID - Épocas de início da degrana

IF - Épocas de início do florescimento

LI - Limite inferior do intervalo de confiança

LRT - Teste da razão de verossimilhança

LS - Limite superior do intervalo de confiança

Mar - Brachiaria brizantha ev. Marandu

M. G. - Média geral

M. F. - Média fenotípica

Mod. Comp. - Modelo completo

NP - Número de pedicelos

NSD - Número de sementes degranadas

NSIT - Número de sementes por inflorescência

NSR - Número de sementes por racemo

NRAC - Número de racemos

PF - Épocas de pleno florescimento

PMS - Peso de mil sementes

PR - Número de perfilhos reprodutivos

PRIM - Número de primórdios de sementes

PV - Número de perfilhos vegetativos

SMT - Peso de sementes colhidas

SP - Peso de sementes puras

TZ - Viabilidade pelo teste de tetrazólio

RESUMO

MONTEIRO, LENISE CASTILHO. Instituto Federal Goiano – Campus Rio Verde – GO, maio de 2015. Caracterização e seleção de híbridos intraespecíficos de *Brachiaria decumbens* para produção de sementes. Jaqueline Rosemeire Verzignassi (Orientadora); Sanzio Carvalho Lima Barrios (Coorientador); Juliana Sales (Coorientadora).

Brachiaria decumbens tem grande importância no cenário nacional da pecuária de corte por apresentar alto potencial produtivo forrageiro e alta adaptabilidade aos solos ácidos e de baixa fertilidade. Apesar da relevância, há apenas uma cultivar disponível no mercado, a cv. Basilisk, lançada na década 1960, e, uma das limitações de seu uso é a suscetibilidade às cigarrinhas-das-pastagens. Tendo em vista a importância da espécie e a crescente demanda por novas cultivares adaptadas, com características agronômicas satisfatórias de produção e de produtividade de forragem com resistência às cigarrinhas-das-pastagens e boas produtoras de sementes, o programa de melhoramento genético e desenvolvimento de cultivares da Embrapa Gado de Corte vem selecionando híbridos intraespecíficos de B. decumbens. Vinte e nove híbridos intraespecíficos (sexuais e apomíticos), previamente avaliados e selecionados pelo programa de melhoramento de Brachiaria quanto às características agronômicas de produção, qualidade da forragem e resistência às cigarrinhas-das-pastagens, foram avaliados nos anos de 2013 e 2014, na Embrapa Gado de Corte, quanto a caracteres fenológicos e potencial de produção de sementes, por meio de seus componentes de produção. Os seguintes caracteres foram avaliados: época de início do florescimento (IF), início da degrana (ID), pleno florescimento (PF) e final da degrana (FD); número de sementes por inflorescência (NSIT); comprimento dos racemos (CR); comprimento das inflorescências (CI); número de perfilhos vegetativos (PV); peso de sementes puras (SP); germinação (G%); peso de sementes vazias (EV); número de sementes degranadas (NSD); número de pedicelos (NP); número de primórdios de sementes (PRIM); número de perfilhos reprodutivos (PR); peso sementes colhidas (SMT); peso de mil sementes (PMS); número de sementes por racemo (NSR); número de racemos (NRAC) e viabilidade pelo teste de tetrazólio (TZ). Em 2013, o delineamento experimental utilizado foi de blocos ao acaso, com duas repetições e uma observação por parcela para SP, EV e G%. Para as demais variáveis, em 2014, o delineamento utilizado foi em blocos ao acaso com duas repetições e duas observações por parcela. Os resultados foram submetidos à análise de deviance pelo programa SELEGEN REML/BLUP. As estimativas de correlação fenotípica foram realizadas pelo software SAS 9.3. A partir dos resultados obtidos nos dois anos consecutivos, observou-se que, para todos os genótipos, houve período juvenil para época de início de florescimento (IF). Quanto à análise genética, verificou-se que, após a fase juvenil, houve variabilidade genética entre os genótipos para todos os caracteres avaliados, exceto para peso de sementes puras (SP) e peso de sementes vazias (EV) dos canteiros. O ganho de seleção (GS%), com intensidade de seleção de 10, 20 e 30%, variou de 103 a 601%, sendo a maior estimativa para SP dos canteiros do segundo ano de produção. Houve correlação entre número de perfilhos reprodutivos (PR) e peso de sementes puras (SP) nos canteiros do segundo ano de produção em nível de 70% (p<0,01), que pode ser considerado como parâmetro para se estimar a produção de sementes puras antes do início do florescimento.

PALAVRAS-CHAVES: fenologia, apomixia, genótipos, melhoramento de forrageiras.

ABSTRACT

MONTEIRO, LENISE CASTILHO. Goiano Federal Institute - Campus Rio Verde - GO, May 2014. Characterization and selection of intraspecific hybrids of *Brachiaria decumbens* for seed production. Jaqueline Rosemeire Verzignassi (Advisor); Sanzio Carvalho Lima Barrios (Co-Advisor); Juliana Sales (Co-Advisor).

Brachiaria decumbens are of great importance in the national meat livestock scenario due to its high forage yield potential and high adaptability to acid soils and low fertility. Despite the relevance, there is only one cultivar on the market, the cv. Basilisk, launched in the 1960s and one of the major limitations of its use is the susceptibility of leafhopper-pastures. Given the importance of the species and the growing demand for new adapted cultivars with satisfactory agronomic characteristics of forage production and productivity, with resistance to leafhoppers-of-pastures and good seed production, the breeding program of Embrapa Gado de Corte has selected intraspecific hybrids of B. decumbens. Twenty-nine intraspecific hybrids (sexual and apomictic), previously evaluated and selected by Brachiaria breeding program for agronomic characteristics of production, forage quality and resistance to leafhoppers-of-pastures were evaluated in the years of 2013 and 2014, in the Embrapa Gado de Corte, as the phenological characteristics and potential of seed production, through their production components. The following traits were evaluated: early flowering season (IF), early threshing (ID), full flowering (PF) and the end of the threshing (FD); number of seeds per inflorescence (NSI); length of racemes (CR); length of inflorescences (CI); number of vegetative tillers (PV); weight of pure seeds (SP); germination (G%); weight of empty seeds (EV); number of drop seeds (NSD); pedicels number (NP); number of seeds of early (PRIM); number of reproductive tillers (RT); weight seeds harvested (SMT); thousand seed weight (PMS); number of seeds per raceme (NSR); number of racemes (NRAC) and viability by the tetrazolium test (TZ). In 2013, the experimental design was randomized blocks with two replications and one observation per plot for SP, EV and G%. For the other variables, in 2014, the used design was randomized block with two replications and two observations per plot. The results were submitted to analysis of deviance by SELEGEN REML / BLUP program. The phenotypic correlation estimates were performed by SAS 9.3 software. From the results obtained in two consecutive years, it was observed that for all genotypes, there was juvenile period for flowering of early season (IF). In the genetic analysis, it was found that after the juvenile phase, there was genetic variability among genotypes for all traits except for weight of pure seeds (SP) and weight of empty seeds (EV) of the beds. The selection gain (GS%), with a selection intensity of 10, 20 and 30%, ranged from 103 to 601%, being the highest estimate for SP of the second year of production. There was a correlation between reproductive tiller number (PR) and the weight of pure seed (SP) in the second year of production in the level of 70% (p <0.01), which can be considered as a parameter to estimate the production of pure seed before the start of flowering.

KEY WORDS: phenology, apomixis, genotypes, forage improvement.

1. INTRODUÇÃO GERAL

Os capins do gênero *Brachiaria* têm distribuição marcadamente tropical (Ghisi, 1991; Crispim & Branco, 2002), possuem como centro principal de origem o leste do continente africano (IBPGR, 1984) e como centro primário a África equatorial (Ghisi, 1991; Renvoize et al., 1996). Recentemente houve a reclassificação do gênero de *Brachiaria* para *Urochloa*, porém, ainda há discussões entre os pesquisadores a respeito de suas características e nova classificação taxonômica.

As plantas desse gênero têm sido amplamente utilizadas como forrageiras na América tropical e a maioria das espécies encontradas no Brasil é considerada exótica. Há relatos de que tenham sido inseridas no país primeiramente de forma acidental, com a vinda dos escravos, que utilizavam os capins como colchão (Seiffert; 1980; Keller-Grein et al., 1996; Crispim & Branco, 2002). Mais tarde, foram trazidas comercialmente para o cultivo de pastagens, como é o caso de *Brachiaria brizantha* (Hochst) Stapf, *Brachiaria decumbens* Stapf, *Brachiaria humidicola* (Rendel) Schuwnickerdt, *Brachiaria radicans* Napper, *Brachiaria ruziziensis* Germain Evrard e *Brachiaria vittata* Stapf (Sendulsky,1977).

Gramíneas forrageiras, especialmente as braquiárias, desempenham papel importantíssimo na pecuária brasileira e foram responsáveis pelo desenvolvimento das regiões Centro-Oeste, Norte e Sudeste do país. Estima-se que cerca de 85% das áreas de pastagem cultivada no Brasil tropical seja de cultivares de *Brachiaria*, com destaque para *B. decumbens* cv. Basilisk, *B. brizantha* cv. Marandu e *B. humidicola* (Valle et al., 2009).

Brachiaria decumbens, pelo seu alto potencial produtivo forrageiro e alta adaptabilidade a solos ácidos e de baixa fertilidade, apresenta grande importância no cenário nacional da pecuária de corte. Mesmo muito relevante economicamente, há apenas uma cultivar disponível no mercado, a cv. Basilisk, lançada na década 1960, com uma das limitações de seu uso a suscetibilidade às cigarrinhas-das-pastagens.

Com a produção de sementes de espécies de forrageiras tropicais iniciada em 1970 no Brasil, apenas em meados dos anos 1980, ou seja, quase vinte anos após o reconhecimento do gênero *Brachiaria* como forrageira no Brasil, se deu o início das pesquisas envolvendo melhoramento de forrageiras (Alcantara, 1986; Verzignassi et al., 2008; Euclides et al., 2010; Verzignassi, 2010). Cumpre ressaltar a importância da cadeia produtiva de sementes de espécies forrageiras tropicais no Brasil, que responde como maior produtor, maior consumidor e maior exportador com produção anual estimada em mais de 100 mil toneladas (Verzignassi et al., 2008; Verzignassi, 2010).

No início, a seleção de plantas forrageiras se baseava apenas no potencial de produção de massa e na qualidade da forragem em condições de pastejo. Porém, nos últimos anos, houve mudança nas linhas e estratégias nos programas de melhoramento dessas plantas, objetivando cultivares superiores em todos os aspectos. O processo de desenvolvimento de cultivares é longo, compreendendo várias etapas e os caracteres avaliados devem estar correlacionados de forma a resultar em cultivares que apresentem bom desempenho em todas as fases e variáveis de estudos e investigação. O processo de desenvolvimento, para que se chegue a liberação de uma nova cultivar no mercado, envolve várias linhas de pesquisa, como o melhoramento propriamente dito, citogenética do sistema reprodutivo, nutrição de plantas, microbiologia, fitossanidade, manejo de pastagem e qualidade nutricional das plantas, produção e tecnologia de sementes, entre outras (Karia et al., 2006; Valle et al., 2009; Barrios, 2014).

Ainda, para o sucesso do programa de melhoramento genético e de cultivares, é de importância incontestável o conhecimento dos efeitos ambientais sobre o desempenho produtivo de espécies forrageiras em condições de estresse (Barrios, 2014).

Considerando que nem sempre as características edafoclimáticas e de manejo agronômico necessárias às máximas produtividades de sementes coincidem com aquelas necessárias a produção de forragem (Hopkinson et al., 1996; Hacker, 1999), estudos sobre respostas fisiológicas e de produção de sementes de gramíneas forrageiras tropicais aos efeitos ambientais são extremamente importantes (Verzignassi, 2010) e atualmente escassos (Souza, 1995; França, 2011).

Assim como qualquer outro fator, o potencial de produção de sementes está intrinsecamente relacionado aos fatores ambientais. Tal como para os demais caracteres agronômicos, esse potencial de produção é de suma importância em programas de melhoramento genético e indicativo disso é o recente interesse em avaliá-lo, de forma persistente, juntamente com o melhoramento de forrageiras tropicais. Esse potencial é

levado em consideração, seja para produção de sementes por genitores utilizados nos programas (sexuais), seja para selecionar acessos ou híbridos do programa de melhoramento (apomíticos), com o objetivo de lançar cultivares com elevado potencial de produção de sementes viáveis (Verzignassi, 2010; Barrios, 2014).

Acrescenta-se que a apomixia existente na maioria das espécies forrageiras resulta em baixa variabilidade genética, caracterizando-se por haver reprodução assexuada por sementes, resultando assim em monocultivos clonais. Já a reprodução sexuada, envolve a participação de dois gametas (masculino e feminino), ocorrendo a fertilização, a meiose e, consequente, recombinação e variabilidade gênica (Valle et al., 1989; Asker & Jerling, 1992). A apomixia é um mecanismo que tem vantagens agronômicas, sendo muito utilizado em melhoramento de plantas, uma vez que se torna possível fixar o genótipo selecionado de forma rápida e sem interferência da heterozigose (Hanna & Bashaw, 1987; Koltunow et al., 1995). Por outro lado, o mecanismo pode causar problemas no sistema produtivo, tornando-o vulnerável às pragas e doenças por causa dos monocultivos de extensas áreas com cultivares apomíticas.

A poliploidia artificial é método de suma importância nos programas de melhoramento permitindo a duplicação cromossômica de acessos sexuais diploides Genótipos sexuais tetraploidizados artificialmente são utilizados como genitor feminino no cruzamento com apomíticos tetraploides gerando variabilidade genética nas progênies resultantes. A indução consiste em igualar a ploidia de genótipos sexuais diploides por meio de substâncias antimitóticas, possibilitando a realização de cruzamentos entre plantas sexuais tetraploidizadas artificialmente com genótipos apomíticos tetraploides (Guerra, 1989).

Considerando o exposto, torna-se imprescindível gerar e selecionar novos genótipos candidatos a cultivares com aspectos agronômicos importantes, como alto valor nutricional, boa produção de forragem, resistência a pragas e doenças, tolerância a estresses abióticos, produção de sementes viáveis em qualidade e quantidade satisfatórias, entre outros aspectos, visando à diversificação de pastagens em nível local, regional e nacional, de forma a contribuir para a sustentabilidade desse agronegócio.

Nesse contexto, o objetivo deste trabalho foi caracterizar e avaliar o potencial de produção de sementes de híbridos intraespecíficos de *Brachiaria decumbens*, desenvolvidos e pré-selecionados pelo programa de melhoramento genético de *Brachiaria* da Embrapa Gado de Corte, para fins de seleção de genótipos superiores,

candidatos a novas cultivares ou potenciais genitores sexuais para serem utilizados em novos cruzamentos.

1.1. Referências bibliográficas

ALCANTARA, P.B. Origem das braquiárias e suas características morfológicas de interesse forrageiro. In: ENCONTRO SOBRE CAPINS DO GÊNERO BRACHIARIA, 1., 1986, Nova Odessa. **Anais...** Nova Odessa: Instituto de Zootecnia, 1986. p.1-18.

ASKER, S.; JERLING, L. Apomixis in plants. Boca Raton: CRC Press, 1992. 298p.

BARRIOS, S.C.L. **Melhoramento genético e desenvolvimento de cultivares de Brachiaria spp. visando à sustentabilidade da produção pecuária**. Macroprograma 2. Linha temática: Desenvolvimento de cultivares de forrageiras tropicais para a diversificação e a sustentabilidade da produção animal em pasto – CULTIFOR. Nº 01/2014. Propostas para arranjos aprovados. Ciclo 5. Proposta aprovada: 02.14.01.011.00.09.

CRISPIM, S.M.A.; BRANCO, O.D. **Aspectos gerais das braquiárias e suas características na sub-região da Nhecolândia, Pantanal, MS.** Corumbá: Embrapa Pantanal, 2002. (Embrapa Pantanal. Boletim de Pesquisa e Desenvolvimento, 33).

EUCLIDES, V.P.B.; VALLE, C.B.; MACEDO, M.C.M.; ALMEIDA, R.G.; MONTAGNER, D.B.; BARBOSA, R.A. Brazilian scientific progress in pasture research during the first decade of XXI century. **Revista Brasileira de Zootecnia**, v.39, p.151-168, 2010.

FRANÇA, L.V. **Fatores ambientais na produção de sementes de híbridos interespecíficos de** *Brachiaria*. 2011.129p. Tese (Doutorado) - Universidade Federal de Pelotas, Pelotas.

GUERRA, M. **Introdução a citogenética geral**. Rio de Janeiro: Guanabara Koogan, 1989. 142p.

GHISI, O.M.A.A. *Brachiaria* na pecuária brasileira: importância e perspectivas. In: ENCONTRO PARA DISCUSSÃO SOBRE CAPINS DO GÊNERO BRACHIARIA, 2., 1991, Nova Odessa. **Anais...** Nova Odessa: Instituto de Zootecnia, 1991. p.1-43.

HACKER, J.B. Crop growth and development: grasses. In: LOCH, D.S.; FERGUSON, J.E. (Ed.) **Forage Seed Production**. Wallingford: CABI International, 1999. p.41-56.

HANNA, W.W.; BASHAW, E.C. Apomixis: its identification and use in plant breeding. **Crop Science**, v.27, n.6, p.1136-1139, 1987.

HOPKINSON, J.M.; SOUZA, F.H.D.; DIULGHEROFF, S.; ORTIZ, A.; SÁNCHEZ, M. Reproductive physiology, seed production, and seed quality of *Brachiaria*. In: MILES, J.W.; MAASS, B.L.; VALLE, C.B. (Ed.): *Brachiaria*: biology, agronomy and improvement. Campo Grande: Embrapa Gado de Corte, 1996. p.124-140.

- IBPGR International board for plant genetic resources: tropical and subtropical forages. **Report of working group**. Roma: FAO, 1984. 29p.
- KARIA, C.T.; DUARTE, J.B.; ARAÚJO, A.C.G. **Desenvolvimento de cultivares do gênero** *Brachiaria* (**trin.**) **Griseb. no Brasil**. Planaltina: Embrapa Cerrados, 2006. (Embrapa Cerrados. Documentos, 163).
- KELLER-GREIN, G.; MAASS, B.L.; HANSON, J. Natural variation in *Brachiaria* and existing germplasm collections. In: MILES, J.W.; MAASS, B.L.; VALLE, C.B. (Ed.). *Brachiaria*: biology, agronomy, and improvement. Campo Grande: Embrapa Gado de Corte, 1996. p.17-42.
- KOLTUNOW, A.M.; BICKNELL, R.A.; CHAUDHURY, A.M. Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. **Plant Physiology**, v.108, p.1345-1352, 1995.
- RENVOIZE, S.A.; CLAYTON, W.D.; KABUYE, C.H.S. Morphology, taxonomy, and natural distribution of *Brachiaria* (Trin.) Griseb In: MILES, J.W.; MAASS, B.L.; VALLE, C.B. (Ed.). *Brachiaria*: biology, agronomy, and improvement. Campo Grande: Embrapa Gado de Corte, 1996. p.1-15.
- SEIFFERT, N.F. **Gramíneas forrageiras do gênero** *Brachiaria*. Campo Grande: Embrapa Gado de Corte, 1980. 83p. (Embrapa Gado de Corte. Circular Técnica, 1).
- SENDULSKY, T. Chave para identificação de *Brachiaria*. **Journal Agroceres**, v.5, n.56, p.4-5, 1977.
- SOUZA, M.A. Fenologia e morfologia reprodutivas de ecótipos de *Brachiaria* spp. Piracicaba, 1995. 89p. Dissertação (Mestrado) Escola Superior de Agricultura Luiz de Queiroz. Piracicaba.
- VALLE, C.B.; SAVIDAN, Y.H.; JANK, L. Apomixis and sexuality in *Brachlaria decumbens* Stapf. In: INTERNATIONAL GRASSLAND CONGRESS, 16., 1989, Paris, **Anais...** Paris: Nice, 1989. p.407-408.
- VALLE, C.B., JANK, L.; RESENDE, R.M.S. O melhoramento de forrageiras tropicais no Brasil. **Revista Ceres**, v.56, n.4, p.460-472, 2009.
- VERZIGNASSI, J.R.; RAMOS, A.K.B.; ANDRADE, C.M.S.; FREITAS, E.M.; LÉDO, F.J.S.; GODOY, R.; ANDRADE, R.P.; COELHO, S.P. **Tecnologia de sementes de forrageiras tropicais: demandas estratégicas de pesquisa**. Campo Grande: Embrapa Gado de Corte, 2008. 17p.
- VERZIGNASSI, J.R. **Inovações tecnológicas para produção de sementes de forrageiras tropicais nativas e exóticas**. Edital MCT/CNPq/FNDCT/FAPs/MEC/CAPES/PRO-CENTRO-OESTE N° 031/2010. Processo: 564408/2010-7.

2. OBJETIVO

Caracterizar e avaliar o potencial de produção de sementes de híbridos intraespecíficos de *Brachiaria decumbens*, desenvolvidos e pré-selecionados pelo programa de melhoramento genético de *Brachiaria* da Embrapa Gado de Corte, para fins de seleção de genótipos superiores, candidatos a novas cultivares, ou potenciais genitores sexuais para serem utilizados em novos cruzamentos.

3. CAPÍTULO I

Caracterização e seleção de híbridos intraespecíficos de *Brachiaria* decumbens para os componentes da produção de sementes

(Normas de acordo com a revista Crop Breeding and Applied Biotechnology)

RESUMO - A apomixia existente em Brachiaria decumbens, tal como para a maioria das espécies forrageiras tropicais, resultando em baixa variabilidade genética, o que pode prejudicar o sistema produtivo em função da alta vulnerabilidade dessa espécie frente a estresses bióticos e/ou abióticos. A espécie possui apenas uma cultivar comercial, a Basilisk e se destaca por ser muito adaptada aos solos ácidos e de baixa fertilidade, situação comum na maior parte do Brasil Central Pecuário. O aspecto negativo da espécie é a suscetibilidade às cigarrinhas-das-pastagens. Sendo assim, torna-se preponderante o desenvolvimento de novas cultivares com alto potencial produtivo de forragem, de sementes e resistência às cigarrinhas-das-pastagens. Vinte e nove híbridos intraespecíficos (sexuais e apomíticos), previamente avaliados e selecionados pelo programa de melhoramento de Brachiaria quanto às características agronômicas de produção e valor nutritivo da forragem e resistência às cigarrinhas-daspastagens, foram avaliados nos anos de 2013 e 2014, na Embrapa Gado de Corte, quanto a caracteres fenológicos e potencial de produção de sementes, por meio de seus componentes de produção. Os seguintes caracteres foram avaliados: época de início do florescimento (IF), início da degrana (ID), pleno florescimento (PF) e final da degrana (FD); número de sementes por inflorescência (NSIT); comprimento dos racemos (CR); comprimento das inflorescências (CI); número de perfilhos vegetativos (PV); peso de sementes puras (SP); germinação (G%); peso de sementes vazias (EV); número de sementes degranadas (NSD); número de pedicelos (NP); número de primórdios de sementes (PRIM); número de perfilhos reprodutivos (PR); peso sementes colhidas (SMT); peso de mil sementes (PMS); número de sementes por racemo (NSR); número de racemos (NRAC) e viabilidade pelo teste de tetrazólio (TZ). Em 2013, o delineamento experimental utilizado foi de blocos ao acaso, com duas repetições e uma observação por parcela para SP, EV e G%. Para as demais variáveis, em 2014, o delineamento utilizado foi em blocos ao acaso com duas repetições e duas observações por parcela. Os resultados foram submetidos à análise de deviance pelo programa SELEGEN REML/BLUP. As estimativas de correlação fenotípica foram realizadas pelo software SAS 9.3. A partir dos resultados obtidos nos dois anos consecutivos, observouse que, para todos os genótipos, houve período juvenil para época de início de florescimento (IF). No ano de 2013, não houve avaliação nos coletores de sementes, sendo realizadas apenas avaliações em canteiro para peso de sementes puras (SP), peso de sementes vazias (EV) e germinação (G%). Quanto à análise genética, verificou-se que, após a fase juvenil, houve variabilidade genética entre os genótipos para todos os caracteres avaliados, exceto para peso de sementes puras (SP) e peso de sementes vazias (EV) dos canteiros. O ganho de seleção (GS%), com intensidade de seleção de 10, 20 e 30%, variou de 103 a 601%, sendo a maior estimativa para SP dos canteiros do segundo ano de produção. Houve correlação entre número de perfilhos reprodutivos (PR) e peso de sementes puras (SP) nos canteiros do segundo ano de produção em nível de 70% (p<0,01), podendo ser considerado como parâmetro para se estimar a produção de sementes puras antes do início do florescimento.

Termos para indexação: fenologia, apomixia, genótipos, melhoramento de forrageiras.

Characterization and selection of intraspecific hybrids of *Brachiaria* decumbens for seed production

ABSTRACT - The apomixis in *Brachiaria decumbens*, as for most tropical forage species, results in low genetic variability, which could affect the production system due to high vulnerability to the environment The species has only one commercial cultivar, the Basilisk which is adapted to very acidic and poor soils, common situation in most of Brazil Central Livestock. The downside of the species is the susceptible to leafhoppersof-pastures. Thus, it becomes predominant the development of new cultivars with high forege and seeds production yield and high resistance to leafhoppers-of-pastures. Twenty-nine intraspecific hybrids (sexual and apomictic), previously evaluated and selected by Brachiaria breeding program for agronomic characteristics of production, forage quality and resistance to leafhoppers-of-pastures were evaluated in the years 2013 and 2014, in the Embrapa Gado de Corte, as the phenological characteristics and potential of seed production, through their production components. The following traits were evaluated: early flowering season (IF), early threshing (ID), full flowering (PF) and the end of the threshing (FD); number of seeds per inflorescence (NSI); length of racemes (CR); length of inflorescences (CI); number of vegetative tillers (PV); weight of pure seeds (SP); germination (G%); weight of empty seeds (EV); number of drop seeds (NSD); pedicels number (NP); number of seeds of early (PRIM); number of reproductive tillers (RT); weight seeds harvested (SMT); thousand seed weight (PMS); number of seeds per raceme (NSR); number of racemes (NRAC) and viability by the tetrazolium test (TZ). In 2013, the experimental design was randomized blocks with two replications and one observation per plot for SP, EV and G%. For the other variables, in 2014, the used design was randomized block with two replications and two observations per plot. The results were submitted to analysis of deviance by SELEGEN REML / BLUP program. The phenotypic correlation estimates were performed by SAS 9.3 software. From the results obtained in two consecutive years, it was observed that for all genotypes, there was juvenile period for flowering of early season (IF). In the genetic analysis, it was found that after the juvenile phase, there was

genetic variability among genotypes for all traits except for weight of pure seeds (SP) and weight of empty seeds (EV) of the beds. The selection gain (GS%), with a selection intensity of 10, 20 and 30%, ranged from 103 to601%, being the highest estimate for SP of the second year of production. There was a correlation between reproductive tiller number (PR) and the weight of pure seed (SP) in the second year of production in the level of 70% (p < 0.01), which can be considered as a parameter to estimate the production of pure seed before the start of flowering.

Index terms: phenology, apomixis, genotypes, forage improvement.

3.1. Introdução

O Brasil apresenta o maior rebanho comercial mundial e atualmente é o maior exportador de carne bovina do mundo. Os custos da bovinocultura brasileira são baixos quando comparados a outros países, garantindo a autossuficiência na produção e, também, alavancando o Brasil no cenário internacional (Karia et al., 2006; Araújo et al., 2008; Barrios, 2014).

Apesar de toda a visibilidade, a cadeia produtiva da carne tem pontos a serem aperfeiçoados. Um deles é a baixa variabilidade genética das plantas forrageiras tropicais disponíveis no mercado brasileiro e, com a crescente demanda por maiores produtividades, torna-se indispensável o desenvolvimento de novas cultivares.

O melhoramento de plantas forrageiras tropicais é relativamente recente quando comparado a outras culturas (Karia et al., 2006; Araújo et al., 2008; Valle et al., 2009; Barrios, 2014) e tem por objetivo o lançamento de plantas mais produtivas em produção e qualidade de forragem e aos vários aspectos agronômicos, especialmente resistência às cigarrinhas-das-pastagens, produção de sementes de qualidade e em quantidade satisfatórias e adaptação as diferentes condições edafoclimáticas.

Brachiaria decumbens, pelo seu alto potencial produtivo forrageiro e alta adaptabilidade a solos ácidos e de baixa fertilidade, apresenta grande importância no cenário nacional da pecuária de corte. Mesmo muito relevante economicamente, há apenas uma cultivar disponível no mercado, a cv. Basilisk, lançada na década 1960, com uma das limitações de seu uso a suscetibilidade às cigarrinhas-das-pastagens.

A apomixia existente em *Brachiaria decumbens*, tal como para a maioria das espécies forrageiras tropicais, resulta em baixa variabilidade genética, e pode prejudicar

o sistema produtivo em função da alta vulnerabilidade aos agentes bióticos e abióticos. Outro ponto a ser levado em conta é a presença frequente de anormalidades meióticas em híbridos de *Brachiaria*, problemas com o pegamento de flores e abortamento, resultando em esterilidade de sementes ou baixos potenciais de produção.

É de suma importância que as cultivares lançadas pelos programas de melhoramento genético superem os problemas existentes como a suscetibilidade às cigarrinhas-das-pastagens, as poucas opções de cultivares disponíveis no mercado e apresentem produção de sementes satisfatória, de forma que a razão entre o custo de produção e o preço das sementes comercializadas seja adequada.

Este trabalho tem por objetivo caracterizar e avaliar o potencial de produção de sementes de híbridos intraespecíficos de *Brachiaria decumbens*, desenvolvidos e préselecionados pelo programa de melhoramento genético da Embrapa Gado de Corte, para fins de seleção de genótipos superiores, candidatos a novas cultivares, ou potenciais genitores sexuais para serem utilizados em novos cruzamentos.

3.2. Material e métodos

Os materiais genéticos utilizados para o desenvolvimento deste trabalho foram selecionados baseados em resultados experimentais anteriores obtidos pelo Programa de Melhoramento Genético *Brachiaria decumbens* da Embrapa Gado de Corte. Vinte e nove híbridos intraespecíficos de *Brachiaria decumbens* (sexuais e apomíticos), genitores e candidatos a novas cultivares, foram previamente selecionados dentre 324 híbridos, obtidos por meio do cruzamento entre três plantas sexuais de *B. decumbens* tetraploidizadas artificialmente (D24/2, D24/27 e D24/45) com a cv. Basilsk (apomítica). A seleção foi baseada em características agronômicas de produção, valor nutritivo da forragem. Como testemunha resistente foi utilizada *B. brizantha* cv. Marandu.

Os genótipos avaliados no primeiro ano de produção foram os seguintes: A020, A030, A033, A023, A021, A032, A029, A027, A019, A026, A025, A028, A035, A031, A007, A013, A005, A003, A015, A011, A017, A008, A001, A018, A004, A002, A042, A043, A044, B009, B010, B005, C001, T038, A009, B026, X121, A012, S044, A024, A036, A041, A038 e R184. Para o segundo ano, foram testados: B006, C001, R025, R033, R041, R044, R071, R078, R087, R091, R101, R107, R110, R120, R124, R126, R144, R181, S018, S031, S036, T005, T012, T026, T054, X030, X072, X117 e Y021.

Os ensaios foram conduzidos, por dois anos consecutivos, em Campo Grande - MS, na Embrapa Gado de Corte, a altitude de 530m, localização geográfica 20° 25' 03"S e 54° 42' 20"W e clima Aw tropical chuvoso de savana, caracterizado por chuvas no verão e estação seca no inverno (Köppen & Geiger, 1928). Os dados climáticos referentes ao período de produção de sementes nos dois anos de avaliação estão representados na Figura 1. Esses dados foram obtidos pela estação climatológica da Embrapa Gado de Corte.

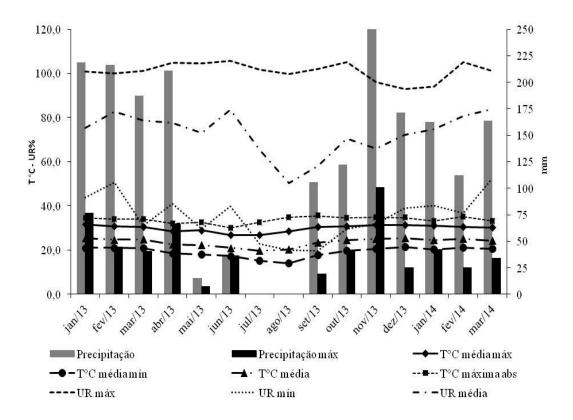


FIGURA 1. Precipitação e precipitação máxima, temperaturas (média, média mínima e média máxima) e umidade relativa do ar (média, mínima e máxima). Campo Grande-MS, 2013 e 2014.

Os ensaios foram conduzidos em condições ambientais normais, sem irrigação artificial e o solo do local foi classificado como Latossolo Vermelho, Distroférrico, textura argilosa (53% de argila, 38% de areia e 9% de silte).

As plantas foram transferidas para o campo no início de 2012, sob forma de mudas. Cada parcela conteve duas mudas, com área útil de 2m² e espaçamento entre parcelas de 1m. As avaliações foram efetuadas durante o primeiro trimestre de 2013, com plantas de primeiro ano, e entre dezembro de 2013 e o primeiro trimestre de 2014, com plantas de segundo ano. Para as avaliações do primeiro ano (safra 2012/2013), foi realizado o corte de uniformização de plantas para produção de sementes em outubro de

2012. Para as avaliações de segundo ano, a uniformização foi realizada no dia 15 de outubro de 2013. O delineamento experimental utilizado foi o de blocos completos, com duas repetições e duas observações por parcela.

Após o corte de uniformização de 2012, efetuou-se a adubação das plantas, baseada em análise química de solo, cujos resultados estão descritos nas Tabelas 1 e 2.

TABELA 1. Resultados de análise química do solo para macronutrientes. Campo Grande, 2012.

P	K Al		
mg.dm ⁻³	cmol.dm ⁻³		
7,63	0,17	<5,0	

*profundidade: 0-20 cm.

TABELA 2. Resultados de análise química do solo para micronutrientes. Campo Grande, 2012.

Mn	Zn	Cu	В
	m	g.dm ⁻³	
83,26	5,1	8,77	0,13

*profundidade: 0-20 cm.

Para tanto, utilizou-se 40 kg.ha⁻¹ de K₂O (cloreto de potássio), 70 kg.ha⁻¹ de nitrogênio (sulfato de amônio) e 1 kg.ha⁻¹ de boro (ácido bórico).

No segundo ano, visando o fornecimento de nutrientes para a safra 2013/2014 e após o corte de uniformização efetuado em 10/2013, foi realizada a adubação das plantas da área experimental, baseada em nova análise de solo (Tabelas 3 e 4). Para tanto, foram utilizados 80 kg.ha⁻¹ de P₂O₅ (MAP), 50 kg.ha⁻¹ de nitrogênio (sulfato de amônio) e 1 kg.ha⁻¹ de boro (ácido bórico).

TABELA 3. Resultados de análise química do solo para macronutrientes. Campo Grande, 2013.

pl	Н	P	MO	K	Ca+Mg	Al	Н	Al+H	S	T	V
CaCl ₂	Água	mg.dm ⁻³	g.dm ⁻³			cmol.	dm ⁻³				%
4,76	5,37	3,2	29,51	0,29	5,9	0,39	5,1	5,49	6,19	11,68	53

*profundidade: 0-20 cm.

TABELA 4. Resultados de análise química do solo para micronutrientes. Campo Grande, 2013.

Fe	Mn	Zn	Cu	В
		mg.dm ⁻³		
29,3	50,73	1,19	4,63	0,24

*profundidade: 0-20 cm.

O acompanhamento no campo foi realizado diariamente, sendo observadas as seguintes variáveis quanto à fenologia reprodutiva:

- Épocas de início do florescimento (IF);
- Épocas de pleno florescimento (PF);
- Épocas de início da degrana (ID);
- Épocas de final da degrana (FD);

O início do florescimento e o pleno florescimento foram acompanhados na área total de cada parcela (2 m²). Considerou-se pleno florescimento a antese completa de 5 a 10 inflorescências.m⁻². Naquele momento foram instalados, ao acaso, dois coletores de sementes por parcela, contendo cinco inflorescências cada (Figura 2).

FIGURA 2. Coletores de sementes instalados na parcela (A). Inflorescências no interior do coletor (B).

A partir das inflorescências inseridas nos coletores de sementes foram registradas as datas de início e final da degrana. Para o início, considerou-se a existência de pelo menos uma semente depositada no fundo do coletor. Para o fim da degrana, considerou-se a degrana completa de todas as inflorescências dentro do coletor, ou seja, sem qualquer semente presa às ráquis das inflorescências.

A partir das avaliações realizadas nos canteiros, realizou-se a determinação das inflorescências típicas do genótipo. Foram coletadas dez inflorescências ao acaso por

parcela. O número de racemos de cada inflorescência foi quantificado e o número que apresentou frequência acima de 60% determinou a inflorescência típica. Foram, então, coletadas oito inflorescências típicas em cada parcela e, a partir dessas inflorescências, foram determinadas as seguintes características quanto a: Características das inflorescências típicas: número de sementes por racemo (NSR), comprimento dos racemos (CR), comprimento das inflorescências (CI), número de racemos (NRAC) e número de sementes por inflorescência (NSIT).

Para a determinação do NSR, foi realizada a contagem de forma crescente da base da inflorescência até o ápice da mesma (Figura 3-A). O CR foi determinado com auxílio de régua graduada. Para tanto, cada racemo foi mensurado a partir do seu ponto de inserção na ráquis até o seu ápice (Figura 3-B). O CI foi obtido a partir da mensuração, com régua graduada, da distância entre o ponto de inserção do primeiro e do último racemo na inflorescência (Figura 3-C).

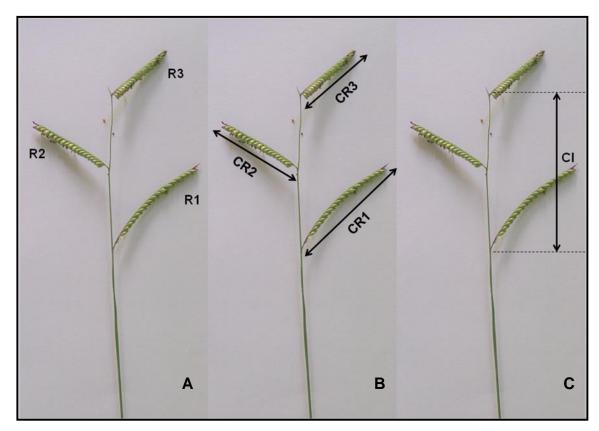


FIGURA 3. Inflorescências de híbridos de *B. decumbens*. Esquema para avaliação: A – Número de sementes nos racemos (NSR). B - Comprimento dos racemos (CR). C - Comprimento das inflorescências (CI).

Ainda nas parcelas, foram realizadas as seguintes avaliações, efetuadas quando do início da formação dos primeiros perfilhos reprodutivos, antes do início da formação das primeiras inflorescências, em 0,25 m²:

- Número de perfilhos vegetativos (PV);
- Número de perfilhos reprodutivos (PR).

Após o fim da degrana das sementes das inflorescências, os coletores foram retirados das parcelas com as suas respectivas sementes e inflorescências. O material coletado foi levado ao Laboratório de Sementes da Embrapa Gado de Corte e avaliados quanto a:

- Peso de sementes puras (SP);
- Peso de sementes vazias (EV);
- Número de pedicelos (NP);
- Número de primórdios de sementes (PRIM);
- Número de sementes degranadas (NSD);
- Peso de sementes colhidas (SMT).

Para a obtenção das sementes puras, realizou-se a separação das sementes cheias das vazias. Para tanto, utilizou-se soprador modelo Seedburo South Dakota Seed Blower, com abertura 3,0 para *Brachiaria decumbens*, e abertura de 6,0 para *Brachiaria brizantha* cv. Marandu, em ambos os casos por 30 segundos.

Para a determinação do número de pedicelos (NP), foi realizada a contagem dos pedicelos existentes nos racemos das inflorescências. Para a determinação do número de primórdios de sementes (PRIM), foi considerada a diferença entre o número de sementes degranadas (NSD) e o número de pedicelos (NP).

Para a determinação da produtividade e da qualidade das sementes, foi realizada a colheita da área total da parcela (2m²). Para tanto, no ponto de maturação de cada uma das parcelas, efetuou-se o corte das plantas de toda a parcela (exceto das inflorescências que estavam inseridas nos coletores). O corte foi efetuado manualmente a 20 cm do solo, por meio de cortador de arroz e foi realizado quando do início da degrana, ao toque, de 15 a 20% das sementes das inflorescências. O material coletado foi ensacado em sacos de papel e esses foram fechados e colocados para secar a sombra. Depois de secas, as amostras foram submetidas à separação manual das sementes das inflorescências. As sementes foram então submetidas ao processamento por operações de pré-limpeza e limpeza por peneiras e soprador de coluna de ar.

Após o processamento das sementes, as seguintes avaliações foram efetuadas, conforme as Regras para Análise de Sementes, RAS (Brasil, 2009):

- Pureza física (Pureza %), peso de sementes vazias (EV) e peso de sementes puras (SP): As sementes produzidas foram homogeneizadas com auxílio do divisor de sementes, sendo submetidas a divisões sucessivas para obtenção de amostras de trabalho para a determinação das sementes puras e, por conseguinte, a produtividade de SP;
- Peso de mil sementes (PMS): Oito subamostras de 50 sementes provenientes da fração de sementes puras foram pesadas e os resultados foram analisados e submetidos à transformação para peso de mil sementes;
- Teste padrão de germinação (G%): A semeadura da fração de sementes puras foi realizada em caixas plásticas transparentes (11×11×3 cm) sobre duas folhas de papel mata borrão umedecidas com nitrato de potássio (0,2%) na quantidade de 2,5 vezes o papel em água. As caixas foram acondicionadas em germinador sob regime alternado de temperatura e de luz (15°C por 16 horas e 35°C por 8 horas). Os resultados foram apresentados como somatórios das avaliações realizadas aos 7, 14 e 21 dias, considerando o parâmetro de avaliação sementes germinadas com estruturas perfeitas;
- Teste de tetrazólio (TZ): 50 sementes por tratamento foram pré-condicionadas por 24h em água. Em seguida, as sementes foram seccionadas e embebidas em solução de tetrazólio (0,5%) durante 4 horas, a temperatura de 30°C e, após, foram analisadas.

No ano de 2013, não houve avaliação nos coletores de sementes, sendo realizadas apenas avaliações em canteiro para peso de sementes puras (SP), peso de sementes vazias (EV) e germinação (G%).

Os dados coletados foram submetidos à análise de deviance (ANADEV), por meio do *software* SELEGEN-REML/BLUP, (Resende, 2006) com o propósito de, simultaneamente, estimar os parâmetros genéticos e predizer os valores genéticos (BLUP) para cada variável.

Para SP, EV e G% das avaliações realizadas em 2013, o modelo utilizado foi o de blocos ao acaso, com uma observação por parcela (modelo 20 do *software* SELEGEN-REML/BLUP), conforme segue:

$$y = Xr + Zg + e$$

Em que:

y: vetor de dados;

r: vetor dos efeitos de repetição (assumidos como fixos) somados à média;

g: vetor dos efeitos genotípicos (assumidos como aleatórios),

e: vetor de erros ou resíduos (aleatórios).

X e Z: matrizes de incidência para os referidos efeitos.

Para os demais caracteres, o modelo foi o de blocos completos, com duas repetições e duas observações por parcela, (modelo 2 do *software* SELEGEN-REML/BLUP), a saber:

$$y = Xr + Zg + Wp + e$$

Em que:

y: vetor de dados;

r: vetor dos efeitos de repetição (assumidos como fixos) somados à média;

g: vetor dos efeitos genotípicos (assumidos como aleatórios);

p: vetor dos efeitos de parcela (aleatórios);

e: vetor de erros ou resíduos (aleatórios);

X, Z e W: matrizes de incidência para os referidos efeitos.

As estimativas de ganho de seleção (GS%) a 10, 20 e 30% de intensidade de seleção foram obtidos conforme a equação a seguir:

$$GS\% = \frac{(\overline{X}_{hibridos \, selecionados} - \overline{X}_{população})}{\overline{X}_{população}} * 100$$

Variáveis que não apresentaram variabilidade genética pela metodologia de modelos mistos foram submetidas à análise de variância pelo programa SAS versão 9.3 (SAS Institute Inc, 2012) e aos testes de comparação de médias (Scott-Knott) pelo *software* GENES 7.0 (Cruz, 2009), a 5% de probabilidade. Ainda, as variáveis das avaliações de segundo ano NSD, NP, PRIM, PR, PV, Pureza%, TZ, G%, PMS, EV, SMT e SP dos canteiros foram analisadas quanto à correlação fenotípica por meio do software SAS 9.3.

3.3. Resultados e discussão

Na Tabela 5, estão relacionadas as épocas de início da degrana (ID) no primeiro e no segundo ano de produção. Verificou-se que, no segundo ano de produção, todos os genótipos apresentaram degrana mais precoce quando comparada ao ano anterior. Este fato pode demonstrar a existência de juvenilidade nos genótipos avaliados. Souza (1995) também constatou a presença de estado juvenil em ecótipos de *B. brizantha* e *B. decumbens*, uma vez que o florescimento no segundo ano ocorreu mais cedo, quando comparado com o ano de estabelecimento.

TABELA 5. Data de início da degrana (ID) de híbridos intraespecíficos de *B. decumbens*, em plantas de primeiro e segundo ano de produção. Campo Grande-MS, 2103 e 2014.

Genótipo	Primeiro ano	Segundo ano	Genótipo	Primeiro ano	Segundo ano
B006	06/02/2013*	06/01/2014	R124	05/02/2013	04/01/2014
C001	04/02/2013	18/12/2013	R126	06/02/2013	08/01/2014
Marandu	06/02/2013	20/01/2014	R144	-	-
R025	06/02/2013	-	R181	04/02/2013	17/01/2014
R033	**	-	S018	-	-
R041	08/02/2013	03/02/2014	S031	28/01/2013	12/01/2014
R044	08/02/2013	-	S036	08/02/2013	07/02/2014
R071	08/02/2013	-	T005	08/02/2013	-
R078	-	-	T012	28/01/2013	27/01/2014
R087	06/02/2013	10/01/2014	T026	28/01/2013	27/01/2014
R091	05/02/2013	05/01/2014	T054	05/02/2013	18/01/2014
R101	08/02/2013	-	X030	28/01/2013	20/01/2014
R107	08/02/2013	-	X072	28/01/2013	15/01/2014
R110	04/02/2013	10/01/2014	X117	08/02/2013	04/02/2014
R120	08/02/2013	04/02/2014	Y021	04/02/2013	03/01/2014

^{*}médias de duas repetições, com duas observações por parcela.

Em resultados demonstrados por Cruz (2010), observou-se retardamento do desenvolvimento do meristema apical em cultivares de *B. brizantha* durante o primeiro período de outono/inverno, também caracterizando juvenilidade.

De acordo com Hopkinson et al. (1996), o desenvolvimento de inflorescência no estado juvenil ocorre de forma lenta, dispersa e mal sincronizada. Para que ocorra perfilhamento reprodutivo, é necessário estímulo ao florescimento por corte de uniformização.

^{**}não houve produção de perfilhos reprodutivos, não proporcionando a produção de sementes.

O pleno florescimento (PF) ocorreu 2 a 17 dias após o início do florescimento (IF) (Tabela 6). O início da degrana (ID) ocorreu 5 a 25 dias após a antese completa das inflorescências. O fim da degrana (FD) se deu de 14 a 59 dias após o seu início. O período de produção, que compreende do pleno florescimento ao ponto de colheita (PC), quando 15 a 20% das sementes estavam degranadas ou foram degranadas ao toque, foi de 16 a 44 dias.

TABELA 6. Épocas de início do florescimento (IF), pleno florescimento (PF), início da degrana (ID) e final da degrana (FD) de híbridos intraespecíficos de *B. decumbens*, durante o segundo ano de produção. Campo Grande-MS, 2014.

Genótipo	IF	PF	ID	FD	PC
B006	13/12/2013*	21/12/2013	06/01/2014	27/01/2014	28/01/2014
C001	01/12/2013	05/12/2013	18/12/2013	24/01/2014	01/01/2014
Marandu	08/01/2014	15/01/2014	20/01/2014	14/03/2014	10/02/2014
R025	15/01/2014	27/01/2014	-	-	-
R033	**	-	-	-	-
R041	14/01/2014	20/01/2014	03/02/2014	15/03/2014	06/02/2014
R044	27/12/2013	20/01/2014	-	-	-
R071	22/01/2014	20/01/2014	-	-	-
R078	-	-	-	-	-
R087	16/12/2013	27/12/2013	10/01/2014	10/03/2014	06/02/2014
R091	15/12/2013	22/12/2013	05/01/2014	06/03/2014	06/02/2014
R101	15/01/2014	20/01/2014	-	-	-
R107	28/12/2013	15/01/2014	-	-	-
R110	17/12/2013	27/12/2013	10/01/2014	31/01/2014	24/01/2014
R120	08/01/2014	14/01/2014	04/02/2014	12/03/2014	06/02/2014
R124	17/12/2013	27/12/2013	04/01/2014	05/02/2014	18/01/2014
R126	13/12/2013	21/12/2013	08/01/2014	01/02/2014	29/01/2014
R144	23/01/2014	-	-	-	-
R181	17/12/2013	27/12/2013	17/01/2014	15/02/2014	30/01/2014
S018	16/01/2014	02/01/2014	-	-	-
S031	27/12/2013	02/01/2014	12/01/2014	04/02/2014	02/02/2014
S036	13/01/2014	20/01/2014	07/02/2014	10/03/2014	06/02/2014
T005	20/01/2014	26/01/2014	-	-	-
T012	27/12/2013	02/01/2014	27/01/2014	27/02/2014	09/02/2014
T026	04/01/2014	14/01/2014	27/01/2014	27/02/2014	02/02/2014
T054	30/12/2013	06/01/2014	18/01/2014	04/02/2014	02/02/2014
X030	22/12/2013	30/12/2013	20/01/2014	26/02/2014	02/02/2014
X072	27/12/2013	02/01/2014	15/01/2014	10/02/2014	29/01/2014
X117	14/01/2014	20/01/2014	04/02/2014	12/03/2014	-
Y021	10/12/2013	20/12/2013	03/01/2014	31/01/2014	21/01/2014

^{*}médias de duas repetições com duas observações por parcela.

^{**}não houve produção de perfilhos reprodutivos, não proporcionando a produção de sementes.

Em estudos realizados por Stür & Humphreys (1988) verificou-se que, para *B. decumbens* cv. Basilisk, as sementes começaram a degranar de 8 a 11 dias após o início do florescimento.

Na Tabela 6, verifica-se a ocorrência de perdas de dados, bem como de plantas, e isso ocorreu pelo fato que a maioria dos genótipos de *B. decumbens* é suscetível ou apresenta um nível mediano de resistência às cigarrinhas-das-pastagens, fato que também pode ter influenciado negativamente a produção de sementes e, ainda, as condições climáticas (Figuras 3, 4 e 5) foram coincidentes com aquelas necessárias para ocorrência de cigarrinhas-das-pastagens na área, principalmente *Notozulia entreriana* e *Deois flavopicta* (Melo et al., 1984). De acordo com Melo et al. (1984), a infestação depende da reposição de água no solo e temperatura média acima de 18°C e tem seu pico de setembro/outubro a abril/maio.

Mateus (2014) avaliou híbridos intraespecíficos de *B. decumbens*, dentre eles R033, R126, R181, S036, T026 e X117, e também verificou alta sobrevivência ninfal de cigarrinhas-das-pastagens, ultrapassando 60%. Ressalta-se que todos os híbridos testados neste trabalho foram considerados suscetíveis ou de resistência mediana em trabalhos anteriores, com sobrevivência ninfal de cigarrinhas-das-pastagens variando de 44 a 90% (Rôdas et al. 2012; Silva et al., 2012; Valério et al, 2014a; Valério et al, 2014b). De acordo com esses autores, para valores acima de 40% de sobrevivência ninfal, os genótipos não são passíveis de seleção quanto à resistência genética.

Para melhor visualização, os resultados da Tabela 6 foram esquematizados em gráfico de Gantt (Figuras 4 e 5). Os genótipos: C001, R041, R120, S018, S031, T005, T012, X072 e X117 apresentaram fenofase IF-PF inferior à testemunha *B. brizantha* cv. Marandu. Ainda, observou-se que todos os genótipos testados apresentaram o intervalo da fenofase PF-ID numericamente superior à testemunha (Figura 4).

Comparando-se as figuras 4 e 5, pode-se observar que a data de final da degrana (FD) ultrapassa a data de colheita (DC) e isso foi justificado pela colheita realizada conforme ponto de maturação das sementes na parcela inteira.

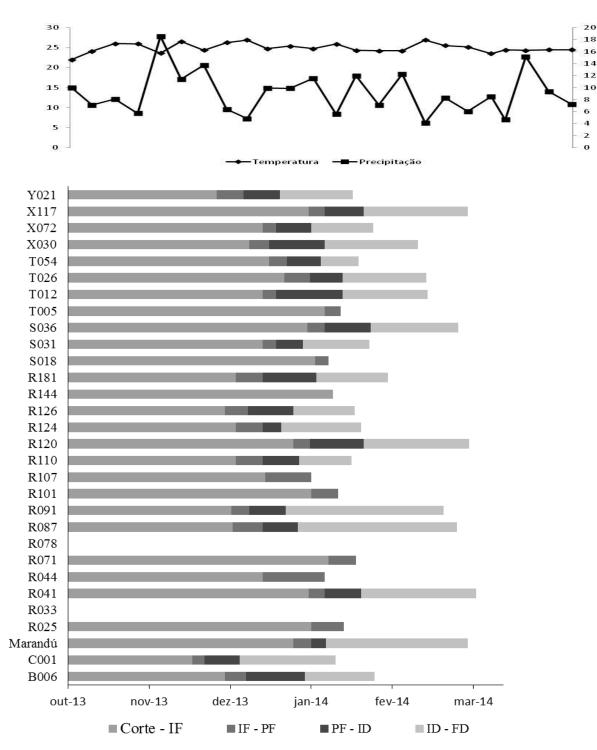


FIGURA 4. Médias semanais de precipitação (mm) e de temperatura (°C) durante o período de compreendido entre início do florescimento (IF), pleno florescimento (PF), início da degrana (ID) e final da degrana (FD) de híbridos de *B. decumbens*, no segundo ano produção. Campo Grande, 2013/2014.

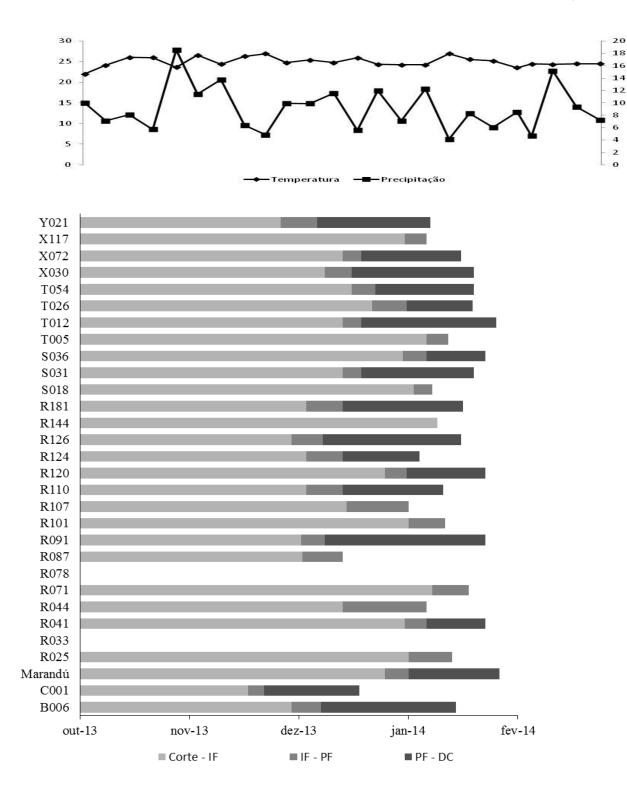


FIGURA 5. Médias semanais de precipitação (mm) e de temperatura (°C) durante o período de compreendido entre o corte, início do florescimento (IF), pleno florescimento (PF) e data de colheita (DC) de híbridos de *B. decumbens*, no segundo ano de produção. Campo Grande, 2013/2014.

Ressalta-se que, para se conhecer a resposta do desenvolvimento reprodutivo dos genótipos às condições ambientais são necessários estudos mais aprofundados com observações em vários ciclos fenológicos consecutivos e locais com condições edafoclimáticas distintas.

A partir do conhecimento da fenologia reprodutiva, podem-se adotar práticas que sejam favoráveis à cadeia produtiva de sementes, como definição de épocas de corte de uniformização, de adubação e de colheita (Souza,1995; Verzignassi, 2010).

Com relação à análise genética de peso de sementes puras (SP), germinação (G%) e peso de sementes vazias (EV) nas avaliações realizadas nos canteiros no primeiro ano de produção, a acurácia (Acc) variou de 67 a 77% (Tabela 7), mantendo dentro dos padrões aceitáveis para seleção (Resende & Duarte, 2007).

Para as variáveis SP e EV, o efeito de genótipos não foi significativo. Já, para a porcentagem de germinação (G%), houve diferença genotípica. O efeito de bloco, considerado de efeito fixo, foi testado via F de Snedecor, sendo significativo (p<0,01) para SP e EV.

Quando os efeitos de genótipos são significativos, os respectivos componentes de variância são significativamente diferentes de zero, assim como os respectivos coeficientes de determinação (Resende & Duarte, 2007).

A ausência de significância entre genótipos para as variáveis SP e EV indica a falta de variabilidade genética entre os genótipos para essas características nas condições de experimentação desse trabalho. Por outro lado, para o percentual de germinação (p<0,05%), a herdabilidade entre as médias de genótipos (h²mc) excedeu 50%, podendo ser considerada de média magnitude, evidenciando que mais da metade da variação fenotípica observada, em média, foi pelas causas genéticas.

Quanto às sementes degranadas nos coletores, observou-se acurácia (Acc) variando de 51 a 97%, portanto dentro dos padrões estabelecidos, sendo classificada como de moderada a elevada magnitude (Resende & Duarte, 2007), significando boa confiabilidade para a predição dos valores genotípicos. Para peso de sementes puras (SP) e peso de sementes vazias (EV) constataram diferenças significativas (p<0,01%) pelo teste de Qui-quadrado (LRT) para o efeito do genótipo. Para a variável NP, a diferença significativa (p<0,01) ocorreu no efeito parcela, evidenciando que houve diferenças entre os coletores de uma mesma parcela.

TABELA 7. Análise de deviance (ANADEV) e estimativas de parâmetros genéticos para peso de sementes puras (SP), peso de sementes vazias (EV) e germinação (G%) para genótipos avaliados no primeiro ano de produção. Campo Grande - MS, 2013

	SP (g.m ⁻²)														
	ANA	DEV		Parâmet											
Efeito	DEV	LRT	Comp. Var.	h²g	h²mc	Acc	M. G.								
Genótipos	280,17	1,01 ^{ns}	15,37	0,29 +- 0,20	0,45	0,67	15,25								
Resíduo			37,83												
Mod. Comp.	279,16														
Blocos		16,86**													

	EV (g.m ⁻²)													
	ANA	DEV		Parâmetros Genéticos										
Efeito	DEV	LRT	Comp. Var.	h²g	h²mc	Acc	M. G.							
Genótipos	409,1	1,52 ^{ns}	166,51	0,30+- 0,21	0,46	0,68	60,53							
Resíduo Mod Comp	107.59		383,97											
Mod. Comp.	407,38	ale ale												
Blocos		13,07**												

			G'	<u>%</u>								
	ANA	DEV		Parâmetros Genéticos								
Efeito	DEV	LRT	Comp. Var.	h²g	h²mc	Acc	M. G.					
Genótipos	247,37	4,52*	11,93	0,42 +- 0,24	0,59	0,77	10,32					
Resíduo			16,24									
Mod. Comp.	242,86											
Blocos		1,63 ^{ns}										

DEV: Valores de deviance; LRT: Teste da razão de verossimilhança (Qui-quadrado); Mod. Comp.: Modelo completo; Comp. Var.: Componente de variância; h^2g : herdabilidade de parcelas individuais no sentido amplo; h^2m : herdabilidade entre médias de genótipos, assumindo ausência de perda de parcelas; Acc: acurácia da seleção de genótipos, assumindo ausência de perda de parcelas; M. G.: Média geral.* significativo pelo teste da razão de verossimilhança, considerando 5% de probabilidade pelo teste de x^2 . ** significativo pelo teste da razão de verossimilhança, considerando 1% de probabilidade pelo teste de x^2 . ** não significativo.

Para os demais caracteres o efeito de genótipos não foi significativo. O número de primórdios de sementes (PRIM) e número de sementes degranadas (NSD) não foi significativo para nenhum dos efeitos. Para as variáveis que apresentaram efeitos dos genótipos significativos (SP e EV) analisadas nos coletores de sementes, as estimativas de herdabilidade (h²mc) apresentaram porcentagem acima de 0,50, que facilita o progresso genético com a seleção de genótipos superiores (Tabela 8).

TABELA 8. Análise de deviance (ANADEV) para peso de sementes puras (SP), peso de sementes vazias (EV), número de sementes degranadas (NSD), número de pedicelos (NP) e número de primórdios de sementes (PRIM) dos coletores durante o segundo ano de produção. Campo Grande - MS, 2014.

de produção	p -		SD(a	m ⁻²)									
	ANA	DEV	SP(g.		râmetros (Genéticos							
Efeito	DEV	LRT	Comp. Var.	h ² g	h ² mc	Acc	M. G.						
Genótipos	-37,37	26,42**	0,30	0,83 +- 0,30	0,95	0,97	0,25						
Parcela	-63,79	0,01ns	0,00	0,00 . 0,00	0,20	0,57	0,20						
Resíduo	,	-,-	0,06										
Mod. Comp.	-63,79												
Bloco		0,00ns											
			EV(g	.m ⁻²)									
ANADEV Parâmetros Genéticos													
Efeito	DEV	LRT	Comp. Var.	h^2g	h²mc	Acc	M. G.						
Genótipos	-79,49	7,14**	0,05	0,37 +- 0,20	0,7	0,84	0,83						
Parcela	-86,62	0.00^{ns}	0										
Resíduo			0,08										
Mod. Comp.	-86,62												
Bloco		0.00^{ns}											
			NS	SD									
	ANA	DEV		Pa	râmetros (Genéticos							
Efeito	DEV	LRT	Comp. Var.	h ² g	h²mc	Acc	M. G.						
Genótipos	879,93	2,44 ^{ns}	15739,5	0,28 +- 0,17	0,56	0,75	711,7						
Parcela	879,15	1,65 ^{ns}	10128,8										
Resíduo			29893,5										
Mod. Comp.	877,5												
Bloco		0.06^{ns}											
			N	P									
	ANA	DEV		Pa	râmetros (Genéticos							
Efeito	DEV	LRT	Comp. Var.	h ² g	h²mc	Acc	M. G.						
Genótipos	873,88	3,54 ^{ns}	25613,5	0,41 +- 0,21	0,63	0,79	863,25						
Parcela	883,47	13,13**	23134,9										
Resíduo			14015,7										
Mod. Comp.	870,34												
Bloco		0.71^{ns}											

DEV: Valores de deviance; LRT: Teste da razão de verossimilhança (Qui-quadrado); Mod. Comp.: Modelo completo; Comp. Var.: Componente de variância; h²g: herdabilidade de parcelas individuais no sentido amplo; h²mc: herdabilidade entre médias de genótipos, assumindo ausência de perda de parcelas; Acc: acurácia da seleção de genótipos, assumindo ausência de perda de parcelas; M. G.: Média geral.** significativo pelo teste da razão de verossimilhança, considerando 1% de probabilidade pelo teste de x^2 . ns - não significativo.

TABELA 8. (Continuação) Análise de deviance (ANADEV) para número de primórdios de sementes (PRIM) dos coletores durante o segundo ano de produção. Campo Grande - MS, 2014.

	PRIM													
	ANA	DEV		Parâmetros Genéticos										
Efeito	DEV LR 7 os 818,74 0,41		Comp. Var.	h²g	h²mc	Acc	M. G.							
Genótipos	818,74	0,41 ^{ns}	2097,88	0,11 +- 0,10	0,26	0,51	153,74							
Parcela	820,99	2,66 ^{ns}	5651,61											
Resíduo			12363,2											
Mod. Comp.	818,33													
Bloco		1,47 ^{ns}												

DEV: Valores de deviance; LRT: Teste da razão de verossimilhança (Qui-quadrado); Mod. Comp.: Modelo completo; Comp. Var.: Componente de variância; h²g: herdabilidade de parcelas individuais no sentido amplo; h²mc: herdabilidade entre médias de genótipos, assumindo ausência de perda de parcelas; Acc: acurácia da seleção de genótipos, assumindo ausência de perda de parcelas; M. G.: Média geral.** significativo pelo teste da razão de verossimilhança, considerando 1% de probabilidade pelo teste de x^2 . ns - não significativo.

A herdabilidade de parcelas individuais (h²g) leva em consideração a existência de apenas uma repetição do genótipo enquanto entre médias dos genótipos (h²mc), a presença de repetições auxilia na redução do efeito ambiental (Resende & Duarte, 2007; Matias, 2015), contribuindo para estimativas mais elevadas de h²mc.

Para avaliações realizadas nos canteiros, os caracteres número de perfilhos reprodutivos (PR), peso de sementes colhidas (SMT), germinação (G%) e peso de mil sementes (PMS) apresentaram estimativas de acurácia (Acc) acima de 0,50 (Tabela 9).

Sobre o efeito de genótipos só houve diferença significativa (p<0,01) na variável PR. Já, PV e SMT foram significativos no efeito parcela. Para germinação (G%) e peso de mil sementes (PMS) os efeitos genótipos e de parcela não foram significativos para ambas as variáveis. O PMS apresentou diferença apenas para o efeito bloco (Tabela 9).

TABELA 9. Análise de deviance (ANADEV) para número de perfilhos reprodutivos (PR), número de perfilhos vegetativos (PV), peso de sementes colhidas (SMT), germinação (G%) e peso de mil sementes (PMS) nos canteiros para genótipos avaliados no segundo ano de produção. Campo Grande - MS, 2014.

no segundo a	no de pro	dução. Cam	po Grande - M	IS, 2014.			
			PR				
	AN	ADEV		Parân	netros Ge	néticos	
Efeito	DEV	LRT	Comp. Var.	h²g	h²mc	Acc	M. G.
Genótipos	494,42	11,86**	871,78	0,88 +- 0,31	0,97	0,98	38,61
Parcela	482,57	0.00^{ns}	0,5				
Resíduo			115,14				
Mod. Comp.	482,57						
Bloco		157,55**					
			PV				
	AN	ADEV		Parân	netros Ge	néticos	
Efeito	DEV	LRT	Comp. Var.	h²g	h²mc	Acc	M. G.
Genótipos	460,73	0.06^{ns}	16,43	0,05 +- 0,07	0,11	0,33	43,27
Parcela	487,43	26,76**	241,62				
Resíduo			72,14				
Mod. Comp.	460,67						
Bloco		0.02^{ns}					
			SMT				
	AN	ADEV		Parân	ietros Ge	enéticos	
Efeito	DEV	LRT	Comp. Var.	h²g	h²mc	Acc	M. G.
Genótipos	-1340,4	-1369,89 ^{ns}	50,05	0,54 +- 0,25	0,71	0,84	10,89
Parcela	363,34	333,83**	41,84				
Resíduo			0				
Mod. Comp.	29,51						
Bloco		10188,64**					
-			G%				
	AN	ADEV		Parân	netros Ge	néticos	
Efeito	DEV	LRT	Comp. Var.	h²g	h²mc	Acc	M. G.
Genótipos	27,89	0,11 ^{ns}	3,91	0,20 +- 0,42	0,39	0,63	5,27
Parcela	28,77	$0,99^{ns}$	8,68				
Resíduo			7,04				
Mod. Comp.	27,78						
Bloco		4,86 ^{ns}					

DEV: Valores de deviance; LRT: Teste da razão de verossimilhança (Qui-quadrado); Mod. Comp.: Modelo completo; Comp. Var.: Componente de variância; h²g: herdabilidade de parcelas individuais no sentido amplo; h²mc: herdabilidade entre médias de genótipos, assumindo ausência de perda de parcelas; Acc: acurácia da seleção de genótipos, assumindo ausência de parcelas; M. G.: Média geral.** significativo pelo teste da razão de verossimilhança, considerando 1% de probabilidade pelo teste de x^2 . ns - não significativo.

TABELA 9. (Continuação) Análise de deviance (ANADEV) para peso de mil sementes (PMS) nos canteiros para genótipos avaliados no segundo ano de produção. Campo Grande - MS, 2014.

			PMS							
	AN	ADEV	Parâmetros Genéticos							
Efeito	DEV	LRT	Comp. Var.	h^2g	h²mc	Acc	M. G.			
Genótipos	-422,62	-411,43 ^{ns}	3,06	1 +- 0,89	1,00	1,00	4,30			
Parcela	-11,19	0.00^{ns}	0,00							
Resíduo			0,01							
Mod. Comp.	-11,19									
Bloco		15,10 **								

DEV: Valores de deviance; LRT: Teste da razão de verossimilhança (Qui-quadrado); Mod. Comp.: Modelo completo; Comp. Var.: Componente de variância; h²g: herdabilidade de parcelas individuais no sentido amplo; h²mc: herdabilidade entre médias de genótipos, assumindo ausência de perda de parcelas; Acc: acurácia da seleção de genótipos, assumindo ausência de perda de parcelas; M. G.: Média geral.** significativo pelo teste da razão de verossimilhança, considerando 1% de probabilidade pelo teste de χ^2 . ns - não significativo.

A partir dos valores genotípicos preditos (BLUP) é possível obter o ordenamento dos híbridos para cada caráter e, assim, identificar com confiabilidade os híbridos com valores genotípicos superiores (Resende, 2006).

TABELA 10. Valores genotípicos preditos (BLUP) dos 44 híbridos (Gen.), média fenotípica (M. F.), limite inferior (LI) e superior (LS) do intervalo de confiança para os valores genotípicos (BLUP), e ganho de seleção (GS%) considerando 30, 20 e 10% de intensidade de seleção para os caracteres peso de sementes puras (SP), peso de sementes vazias (EV) germinação (G%) para híbridos de *B. decumbens* no primeiro ano de produção. Campo Grande - MS, 2013

		SP (g	g.m ⁻²)					EV (g.m ⁻²)					G%	6		
Order	n Gen			LS	M. F.	Ordem	Gen			LS	M. F.	Ordem	Gen	BLUP	LI	LS	M. F.
1	A020	20,23	13,71	26,74	35,16	1	A030	79,74	60,98	98,50	101,89	1	A044	19,95	15,55	24,35	26,50
2	A012	19,81	13,28	26,35	28,35	2	A012	72,09	50,77	93,40	91,19	2	A029	13,70	9,30	18,10	16,00
3	A027	19,36	13,58	25,13	24,41	3	A029	72,08	53,33	90,84	85,41	3	A030	13,70	9,30	18,10	16,00
4	A032	18,70	12,18	25,22	29,88	4	A020	69,58	48,32	90,83	97,99	4	A004	13,34	8,15	18,53	18,00
5	A030	18,44	12,66	24,22	22,37	5	A026	69,39	50,63	88,14	79,60	5	A025	13,10	8,70	17,50	15,00
6	A026	18,16	12,38	23,94	21,74	6	A023	69,25	48,00	90,51	96,92	6	A023	12,49	7,30	17,69	16,00
7	A019	17,92	11,40	24,43	27,17	7	A007	68,68	47,43	89,94	95,03	7	A031	12,49	7,30	17,69	16,00
8	A023	17,66	11,15	24,18	26,29	8	A027	68,54	49,78	87,30	77,78	8	A042	12,49	7,30	17,69	16,00
9	B009	17,56	11,04	24,07	25,92	9	A032	68,25	46,99	89,50	93,60	9	A036	11,69	6,47	16,90	13,00
10	A033	17,35	10,83	23,86	25,19	10	A021	68,16	49,40	86,91	76,95	10	X121	11,69	6,47	16,90	13,00
11	A038	17,34	10,81	23,88	19,80	11	A019	65,41	44,15	86,66	84,20	11	A020	11,65	6,45	16,84	14,00
12	A003	17,18	10,66	23,69	24,60	12	A025	65,17	46,42	83,93	70,53	12	A008	11,62	7,22	16,02	12,50
13	A009	16,30	9,77	22,84	16,20	13	C001	65,03	46,27	83,79	70,22	13	A026	11,32	6,92	15,72	12,00
14	A025	16,07	10,29	21,85	17,07	14	A041	64,91	43,60	86,23	67,47	14	S044	10,84	5,62	16,06	11,00
15	A029	15,92	10,14	21,70	16,74	15	A042	64,83	43,57	86,08	82,29	15	A013	10,80	5,60	15,99	12,00
16	A021	15,41	9,63	21,19	15,60	16	A033	64,01	42,75	85,26	79,58	16	A019	10,80	5,60	15,99	12,00
17	B026	15,19	8,66	21,73	12,35	17	A038	63,47	42,16	84,79	62,70	17	A027	10,43	6,03	14,83	10,50
18	A042	15,15	8,63	21,66	17,58	18	B010	62,63	41,38	83,89	75,03	18	A028	10,37	5,18	15,57	11,00
19	R184	15,13	8,59	21,66	12,12	19	B009	62,44	41,18	83,69	74,39	19	B010	10,37	5,18	15,57	11,00
20	A005	15,10	8,58	21,61	17,40	20	S044	62,07	40,76	83,39	58,07	20	A021	10,13	5,73	14,53	10,00
21	A041	15,06	8,52	21,59	11,89	21	A024	61,56	40,24	82,87	56,37	21	A038	9,99	4,78	15,21	9,00
22	A028	14,93	8,42	21,45	16,84	22	A008	61,23	42,47	79,98	62,03	22	A003	9,95	4,76	15,15	10,00

TABELA 10. (Continuação)

		SP (g	3 /					EV (g.m ⁻²)			G%					
Ordem	Gen	BLUP	LI	LS	M. F.	Ordem	Gen	BLUP	LI	LS	M. F.	Ordem	Gen	BLUP	LI	LS	M. F.
23	T038	14,91	8,39	21,43	16,76	23	A013	59,60	38,34	80,85	65,00	23	A015	9,95	4,76	15,15	10,00
24	B010	14,69	8,18	21,21	16,01	24	A031	59,19	37,94	80,45	63,65	24	A032	9,95	4,76	15,15	10,00
25	A044	14,55	8,77	20,33	13,68	25	A044	59,07	40,31	77,82	57,38	25	T038	9,95	4,76	15,15	10,00
26	A007	14,52	8,00	21,04	15,41	26	R184	58,58	37,26	79,89	46,52	26	C001	9,83	5,43	14,23	9,50
27	A008	14,33	8,55	20,11	13,20	27	A003	58,42	37,16	79,67	61,10	27	A009	9,57	4,35	14,79	8,00
28	A013	14,23	7,72	20,75	14,41	28	A015	58,12	36,86	79,37	60,10	28	B026	9,57	4,35	14,79	8,00
29	A017	14,15	8,37	19,93	12,80	29	A028	57,97	36,72	79,23	59,63	29	R184	9,57	4,35	14,79	8,00
30	A011	14,02	7,50	20,54	13,68	30	A009	57,32	36,00	78,63	42,35	30	A033	9,53	4,33	14,72	9,00
31	A002	14,00	8,22	19,78	12,46	31	T038	55,93	34,68	77,19	52,88	31	B009	9,53	4,33	14,72	9,00
32	S044	13,90	7,36	20,43	7,86	32	A004	55,87	34,61	77,12	52,66	32	A035	9,24	4,84	13,64	8,50
33	A001	13,72	7,21	20,24	12,65	33	B026	55,37	34,05	76,68	35,90	33	A012	9,15	3,93	14,36	7,00
34	A024	13,66	7,12	20,19	7,04	34	A036	55,06	33,75	76,38	34,90	34	B005	9,10	3,91	14,30	8,00
35	A043	13,56	7,78	19,33	11,47	35	B005	54,34	33,09	75,60	47,63	35	A017	8,34	3,94	12,74	7,00
36	X121	13,38	6,85	19,92	6,09	36	A017	54,06	35,30	72,82	46,60	36	A024	8,30	3,08	13,52	5,00
37	A036	13,23	6,69	19,76	5,55	37	A043	53,81	35,05	72,56	46,05	37	A041	8,30	3,08	13,52	5,00
38	A004	13,07	6,55	19,59	10,38	38	A005	50,99	29,74	72,25	36,55	38	A007	8,26	3,06	13,45	6,00
39	C001	12,95	7,17	18,72	10,11	39	A011	50,29	29,03	71,54	34,21	39	A002	7,75	3,35	12,15	6,00
40	A031	12,94	6,43	19,46	9,95	40	X121	50,27	28,96	71,59	19,07	40	A005	7,41	2,22	12,60	4,00
41	A015	12,82	6,31	19,34	9,53	41	A035	48,86	30,10	67,62	35,41	41	A011	7,41	2,22	12,60	4,00
42	B005	12,67	6,15	19,19	9,00	42	A018	47,48	26,22	68,73	24,92	42	A018	7,41	2,22	12,60	4,00
43	A018	12,30	5,79	18,82	7,73	43	A001	47,38	26,12	68,63	24,60	43	A043	6,86	2,46	11,26	4,50
44	A035	9,57	3,80	15,35	2,59	44	A002	46,90	28,14	65,66	31,18	44	A001	6,14	0,95	11,33	1,00
GS%	30%	20%	10%			GS%	30%	20%	10%			GS%	30%	20%	10%		
	19	22	28				15	17	21				26	32	47		

Para as avaliações durante o primeiro ano, os híbridos A030 e A023 foram ranqueados nas dez primeiras posições para os três caracteres avaliados, SP, EV e G%. O ganho de seleção (GS%) para SP em relação à média da população foi de 19, 22 e 28% para as intensidades de seleção de 30, 20 e 10%, respectivamente. Para EV foi de 15, 17 e 21% para as intensidades de seleção de 30, 20 e 10%, respectivamente, e, para G%, de 26, 32 e 47% (Tabela 10). Ressalta-se que, quanto maior o ganho de seleção em relação à média população, maior o progresso na seleção de genótipos superiores.

Para as avaliações realizadas nas cestas durante o segundo ano, para as variáveis peso de sementes puras (SP) e peso de sementes vazias (EV), a testemunha cv. Marandu apresentou os maiores valores genotípicos (BLUP). Para SP, os ganhos de seleção (GS%) com 30, 20 e 10% de intensidade de seleção, foram de, respectivamente, 149, 221 e 324% e, para EV, foram de 23, 27 e 34% em relação à média da população.

Com relação ao número de sementes degranadas (NSD), o genótipo R181 apresentou numericamente maior BLUP que a cv. Marandu, entretanto não superou a cultivar quando os intervalos de confiança foram considerados. Este genótipo não apresentou BLUP de maior magnitude para SP em relação à cv. Marandu. O ganho de seleção para NSD foi de 11, 15 e 23% a 30, 20 e 10% de intensidade de seleção, respectivamente (Tabela 11).

Com relação ao número de pedicelos (NP), os genótipos R120 e R181 sobressaíram em relação à testemunha, mas sem diferir quando observado os intervalos de confiança. Para número de primórdios (PRIM), o híbrido R120 foi superior a testemunha (Tabela 12). Corroborando com os dados apresentados na Tabela 10. A cv. Marandu se posicionou em décima sexta colocação em PRIM, ou seja, apresentou menor relação entre número de sementes degranadas (NSD) e número de pedicelos (NP). Os ganhos de seleção (GS%) para NP em 30, 20 e 10% de intensidade de seleção, foram de, respectivamente, 14, 20 e 29% em relação à média da população.

TABELA 11. Valores genotípicos preditos (BLUP) dos 44 híbridos (Gen.), média fenotípica (M. F.), limite inferior (LI) e superior (LS) do intervalo de confiança para os valores genotípicos (BLUP), e ganho de seleção (GS%) considerando 30, 20 e 10% de intensidade de seleção para os caracteres peso de sementes puras (SP), peso de sementes vazias (EV) e germinação (G%) em relação à cv. Marandu (Mar) para híbridos de *B. decumbens* no segundo ano de produção. Campo Grande - MS, 2014.

SP (a m ⁻²)																	
SP (g.m	²)					EV (g.m						NSD					
Ordem	Gen.	BLUP	LI	LS	M. F.	Ordem	Gen.	BLUP	LI	LS	M. F.	Ordem	Gen.	BLUP	LI	LS	M. F.
1	Mar	2,38	2,04	2,72	2,49	1	Mar	1,17	0,93	1,41	1,32	1	R181	961,65	792,73	1130,58	1160,75
2	R087	0,76	0,35	1,16	0,81	2	R181	1,15	0,90	1,39	1,29	2	Mar	848,92	671,78	1026,06	982,67
3	R120	0,41	0,08	0,75	0,42	3	R091	1,02	0,77	1,26	1,10	3	X030	775,32	606,40	944,25	826,00
4	R126	0,30	-0,03	0,64	0,31	4	S036	1,00	0,75	1,24	1,07	4	S036	751,81	582,88	920,73	783,75
5	C001	0,30	-0,04	0,64	0,30	5	R120	0,94	0,70	1,19	1,00	5	S031	738,45	569,52	907,37	759,75
6	X030	0,20	-0,13	0,54	0,20	6	S031	0,93	0,68	1,17	0,97	6	R091	735,94	567,02	904,87	755,25
7	R124	0,09	-0,25	0,43	0,08	7	X030	0,92	0,68	1,17	0,96	7	R120	734,97	566,05	903,89	753,50
8	Y021	0,07	-0,27	0,40	0,06	8	X072	0,82	0,58	1,07	0,82	8	T026	719,94	551,02	888,86	726,50
9	R091	0,06	-0,27	0,40	0,06	9	X117	0,82	0,58	1,07	0,82	9	C001	719,94	551,02	888,86	726,50
10	B006	0,05	-0,31	0,41	0,04	10	R110	0,81	0,56	1,05	0,80	10	R041	716,88	547,96	885,80	721,00
11	T012	0,05	-0,29	0,39	0,04	11	B006	0,80	0,53	1,06	0,78	11	X117	713,54	544,62	882,46	715,00
12	R041	0,05	-0,29	0,38	0,04	12	R041	0,79	0,55	1,04	0,78	12	R110	698,65	529,73	867,57	688,25
13	X117	0,05	-0,29	0,38	0,04	13	T026	0,77	0,53	1,02	0,75	13	T012	697,67	528,75	866,60	686,50
14	S031	0,04	-0,36	0,44	0,02	14	T012	0,77	0,52	1,01	0,74	14	X072	697,54	528,61	866,46	686,25
15	S036	0,04	-0,30	0,38	0,03	15	R126	0,77	0,52	1,01	0,74	15	R126	695,17	526,25	864,09	682,00
16	R181	0,04	-0,36	0,44	0,02	16	C001	0,70	0,46	0,94	0,65	16	R124	684,32	515,39	853,24	662,50
17	T054	0,03	-0,30	0,37	0,02	17	R124	0,69	0,45	0,93	0,63	17	B006	657,56	480,42	834,70	613,00
18	R110	0,03	-0,31	0,37	0,02	18	Y021	0,58	0,34	0,83	0,48	18	Y021	587,46	418,54	756,39	488,50
19	X072	0,03	-0,31	0,36	0,02	19	R087	0,56	0,27	0,85	0,33	19	R087	563,89	368,07	759,71	322,00
20	T026	0,02	-0,31	0,36	0,01	20	T054	0,50	0,26	0,75	0,36	20	T054	534,44	365,52	703,37	393,25
GS%	30%	20%	10%			GS%	30%	20%	10%			GS%	30%	20%	10%		
-	149	221	324				23	27	34				11	15	23		

TABELA 12. Valores genotípicos preditos (BLUP) dos 44 híbridos (Gen.), média fenotípica (M. F.), limite inferior (LI) e superior (LS) do intervalo de confiança para os valores genotípicos (BLUP), e ganho de seleção (GS%) considerando 30, 20 e 10% de intensidade de seleção para os caracteres número de pedicelos (NP) e número de primórdios de sementes (PRIM) em relação à cv. Marandu (Mar) para híbridos de *B. decumbens* no segundo ano de produção. Campo Grande – MS, 2014.

NP		ens no segui			<u> </u>	PRIM					
Ordem	Gen.	BLUP	LI	LS	M. F.	Ordem	Gen.	BLUP	LI	LS	M. F.
1	R181	1139,47	940,48	1338,46	1302,00	1	R120	228,87	151,03	306,71	440,75
2	R120	1071,63	872,65	1270,62	1194,25	2	S031	190,59	112,75	268,42	294,50
3	Mar.	993,10	794,11	1192,08	1069,50	3	T012	166,04	88,21	243,88	200,75
4	S031	983,50	784,51	1182,48	1054,25	4	R091	161,40	83,56	239,24	183,00
5	R091	910,47	711,48	1109,45	938,25	5	R126	161,20	83,36	239,04	182,25
6	S036	885,28	686,29	1084,27	898,25	6	X117	159,83	81,99	237,66	177,00
7	X117	881,35	682,36	1080,34	892,00	7	X072	155,70	77,87	233,54	161,25
8	T012	878,36	679,37	1077,35	887,25	8	B006	154,68	75,21	234,14	165,33
9	X030	878,20	679,21	1077,19	887,00	9	T054	153,02	75,18	230,86	151,00
10	R041	865,45	666,46	1064,44	866,75	10	R041	151,65	73,81	229,48	145,75
11	R126	863,88	664,89	1062,87	864,25	11	R181	150,47	72,63	228,31	141,25
12	C001	861,05	662,06	1060,03	859,75	12	C001	148,37	70,54	226,21	133,25
13	X072	853,33	654,34	1052,32	847,50	13	T026	144,25	66,41	222,09	117,50
14	T026	851,13	652,14	1050,12	844,00	14	R110	143,73	65,89	221,56	115,50
15	R110	825,79	626,80	1024,78	803,75	15	S036	143,47	65,63	221,30	114,50
16	B006	790,33	586,15	994,50	778,33	16	Mar.	139,80	61,96	217,64	100,50
17	R124	769,76	570,77	968,75	714,75	17	R087	139,12	56,01	222,24	78,00
18	T054	662,42	463,43	861,41	544,25	18	X030	129,46	51,62	207,30	61,00
19	Y021	657,22	458,23	856,21	536,00	19	R124	127,17	49,33	205,01	52,25
20	R087	643,21	407,70	878,73	400,00	20	Y021	125,93	48,09	203,76	47,50
GS%	30%	20%	10%			GS%	30%	20%	10%		
	14	20	29				15	21	36		

TABELA 13. Valores genotípicos preditos (BLUP) dos 44 híbridos (Gen.), média fenotípica (M. F.), limite inferior (LI) e superior (LS) do intervalo de confiança para os valores genotípicos (BLUP), e ganho de seleção (GS%) considerando 30, 20 e 10% de intensidade de seleção para os caracteres número de perfilhos reprodutivos (PR), número de perfilhos vegetativos (PV) e peso de sementes puras (SP) em relação a cv. Marandu (Mar) para híbridos de *B. decumbens* nos canteiros no segundo ano de produção. Campo Grande – MS, 2014.

PR						PV						SP (g.	m ⁻²)				
Ordem	Gen	BLUP	LI	LS	M. F.	Ordem	Gen	BLUP	LI	LS	M.F.	Ordem	Gen	BLUP	LI	LS	M. F.
1	C001	140,84	124,15	157,54	144,25	1	X030	45,60	38,06	53,13	65,25	1	C001	4,55	3,84	5,27	4,93
2	R091	71,41	54,71	88,11	72,50	2	Y021	45,31	37,77	52,84	62,50	2	Mar	2,24	1,52	2,95	2,39
3	Y021	68,99	52,29	85,69	70,00	3	T026	44,83	37,29	52,37	58,00	3	T012	0,22	-0,65	1,09	0,11
4	R124	49,63	32,93	66,33	50,00	4	R126	44,59	37,06	52,13	55,75	4	R041	0,18	-0,53	0,9	0,15
5	Mar	36,57	19,87	53,27	36,50	5	R110	44,20	36,66	51,73	52,00	5	R120	0,15	-0,57	0,86	0,11
6	B006	36,08	19,39	52,78	36,00	6	R087	44,06	36,32	51,79	57,50	6	R091	0,14	-0,73	1,01	0,01
7	S031	33,91	17,21	50,60	33,75	7	R120	43,64	36,10	51,18	46,75	7	X030	0,12	-0,6	0,83	0,08
8	S036	30,52	13,82	47,22	30,25	8	T054	43,51	35,97	51,05	45,50	8	Y021	0,1	-0,62	0,81	0,06
9	R041	29,79	13,10	46,49	29,50	9	R041	43,40	35,87	50,94	44,50	9	S036	0,09	-0,63	0,8	0,05
10	T012	29,31	12,61	46,01	29,00	10	B006	43,27	35,73	50,81	43,25	10	R124	0,07	-0,64	0,79	0,03
11	T054	28,58	11,89	45,28	28,25	11	T012	43,11	35,57	50,65	41,75	11	B006	0,07	-0,64	0,79	0,03
12	X030	25,68	8,98	42,38	25,25	12	X072	43,03	35,50	50,57	41,00	12	T054	0,06	-0,66	0,77	0,02
13	X072	25,68	8,98	42,38	25,25	13	S036	42,69	35,15	50,22	37,75	13	S031	0,06	-0,81	0,92	0,03
14	R126	23,99	7,29	40,68	23,50	14	Mar	42,58	35,05	50,12	36,75	14	R110	0,05	-0,67	0,76	0,01
15	T026	23,50	6,81	40,20	23,00	15	S031	42,50	34,97	50,04	36,00	15	R126	0,05	-0,82	0,91	0,02
16	R120	22,78	6,08	39,48	22,25	16	R181	41,97	34,44	49,51	31,00	16	T026	0,04	-0,83	0,9	0,01
17	R110	21,81	5,11	38,51	21,25	17	C001	41,50	33,96	49,03	26,50						
18	R087	17,71	-1,64	37,06	13,00	18	R124	41,31	33,78	48,85	24,75						
19	R181	16,73	0,03	33,43	16,00	19	R091	41,07	33,54	48,61	22,50						
GS%	30%	20%	10%			GS%	30%	20%	10%			GS%	30%	20%	10%		
	73	114	174				3	4	5				164	316	501		

Tanto nas avaliações realizadas nos coletores como nos canteiros (Tabelas 11 e 13), o peso de sementes puras (SP) dos híbridos foi, em geral, de menor magnitude que o da testemunha. Três fatores podem ter colaborado para isso, a saber: a alta taxa de abortamento em função da hibridização, como sugere França (2011); a interferência pela infestação por cigarrinhas-das-pastagens e; a possibilidade de ser característica própria do genótipo, produzindo apenas perfilhos vegetativos e, apenas sob condição de estresse extremo, produzir perfilhos reprodutivos.

A inviabilidade das sementes de híbridos pode ser causada pela interação entre ambiente e genótipo, afetando a viabilidade do pólen ou, ainda, em função do genótipo híbrido apresentar alelo de incompatibilidade gametofítica, impedindo a formação do endosperma e, consequentemente, o enchimento da semente (França, 2011).

Mateus (2014) constatou que, para os genótipos R033, R126, R181, S036, T026 e X117, ninfas de cigarrinhas-das-pastagens apresentaram alta taxa de sobrevivência. Deve-se considerar que todos os genótipos avaliados apresentaram sobrevivência de moderada a alta magnitude quando avaliados para resistência, sendo alguns híbridos comparáveis a cultivar suscetível Basilisk, com sobrevivência de 82%, e contrastando com a testemunha resistente cv. Marandu, cuja sobrevivência se situa em torno de 36% (Rôdas et al., 2012; Silva et al., 2012; Valério et al., 2014a; Valério et al., 2014b).

O ganho de seleção dos melhores híbridos para SP de canteiro em 30, 20 e 10% de intensidade de seleção foi de, respectivamente, 164, 316 e 501% em relação à média da população. Para a variável PR, a cv. de *B. brizantha* ficou em quinto lugar, precedida pelos genótipos C001, R091, Y021 e R124 e o ganho de seleção (GS%) em 30, 20 e 10% de intensidade, foi de, respectivamente, 73, 114 e 174%.

Os genótipos X030, Y021, T026, R126, R110, R087, R120, T054, R041, B006, T012, X072 e S036 sobressaíram em comparação à testemunha no que diz respeito à produção de perfilhos vegetativos (Tabela 13), e apesar de estatisticamente não serem superiores, obtiveram ganho de seleção de 3, 4 e 5%, a 30, 20 e 10%, respectivamente. Mateus (2014), com relação à média BLUP, verificou que os híbridos R041 e B006 apresentaram maiores valores para o caráter produtividade de massa seca total.

Ainda, para as avaliações dos canteiros, a testemunha cv. Marandu apresentou as maiores médias em germinação (G%) e peso de mil sementes (PMS). O genótipo C001 provavelmente apresenta dormência em suas sementes, uma vez que a viabilidade

pelo teste de tetrazólio foi de 89% e o percentual de germinação foi de 2,75%. Para a variável SMT, a cv. Marandu, não sobressaiu a C001 e S031. O ganho de seleção (GS%) dos melhores híbridos avaliados para SMT a 30, 20 e a 10 % de intensidade foi e 61, 75 e 131% em relação à média da população (Tabela 14).

TABELA 14. Valores genotípicos preditos (BLUP) dos 44 híbridos (Gen.), média fenotípica (M. F.), limite inferior (LI) e superior (LS) do intervalo de confiança para os valores genotípicos (BLUP), e ganho de seleção (GS%) considerando 30, 20 e 10% de intensidade de seleção para os caracteres peso de sementes colhidas (SMT), germinação (G%) e peso de mil sementes (PMS) em relação à cv. Marandu (Mar) para híbridos de *B. decumbens* avaliados nos canteiros no segundo ano de produção. Campo Grande - MS, 2014.

SMT (g.m	1 ⁻²)					G%						PMS (g.m	r ⁻²)				
Ordem	Gen	BLUP	LI	LS	M. F.	Ordem	Gen	BLUP	LI	LS	M. F.	Ordem	Gen	BLUP	LI	LS	M. F.
1	C001	33,76	27,56	39,97	43,33	1	Mar	6,44	3,04	9,84	8,25	1	Mar	6,13	4,14	8,11	6,13
2	S031	15,49	9,28	21,7	17,41	2	R041	5,1	1,51	8,69	2	2	C001	4,15	2,17	6,13	4,15
3	Mar	15,19	8,98	21,39	16,98	3	C001	4,29	0,89	7,69	2,75	3	R041	2,64	0,65	4,62	2,81
4	T012	13,87	7,67	20,08	15,12												
5	R041	11,5	5,29	17,7	11,75												
6	R091	11,15	4,94	17,35	11,25												
7	R120	10,46	4,25	16,67	10,28												
8	R126	10,35	4,15	16,56	10,13												
9	B006	9,91	3,71	16,12	9,5												
10	R124	9,79	3,58	15,99	9,32												
11	S036	9,05	2,84	15,26	8,28												
12	Y021	8,64	2,43	14,84	7,69												
13	R181	7,23	1,02	13,44	5,7												
14	X030	6,43	0,22	12,64	4,57												
15	R110	6,41	0,2	12,62	4,53												
16	T026	5,9	-0,3	12,11	3,82												
17	T054	5,84	-0,37	12,05	3,73												
18	X072	5,12	-1,09	11,33	2,71												
GS %	30%	20%	10%			GS%	30%	20%	10%			GS%	30%	20%	10%		
	61	75	131				9	9	-				22	22	-		

TABELA 15. Análise de deviance (ANADEV) para número de sementes por inflorescência (NSIT), número de sementes por racemo (NSR), número de racemos (NRAC), comprimento dos racemos (CR) e comprimento das inflorescências (CI) para híbridos intraespecíficos de *B. decumbens* nos canteiros no segundo ano de produção.

nibridos intra	especific	cos de <i>B. de</i>	ecumbens nos	canteiros no se	egundo ano	de prod	uçao.
NSIT							
ANADEV				Parâmetros	genéticos		
Efeito	DEV	LRT	Comp. Var.	h ² g	h²mc	Acc	M. G.
Genótipos	2398,7	33,24**	1070,1	0,44 +- 0,11	0,77	0,88	30,77
Parcela	2388,5	22,98**	388,28				
Resíduo			973,39				
Mod. Comp.	2365,5						
Blocos		0.05^{ns}					
NSR							
ANADEV				Parâmetros	genéticos		
Efeito	DEV	LRT	Comp. Var.	h ² g	h²mc	Acc	M. G.
Genótipos	1514,5	43,43**	33,18	0,38 +- 0,10	0,82	0,91	30,77
Parcela	1471,3	$0,21^{ns}$	1,34				
Resíduo			51,74				
Mod. Comp.	1471,1						
Blocos		$0,10^{ns}$					
NRAC							
ANADEV				Parâmetros	genéticos		
Efeito	DEV	LRT	Comp. Var.	h ² g	h²mc	Acc	M. G.
Genótipos	-2306	235,46**	0,54	0,53 +- 0,12	0,69	0,83	4,42
Parcela	126,62	2667,90**	0,48				
Resíduo			0				
Mod. Comp.	-2541						
Blocos		250000**					
CR							
ANADEV				Parâmetros	genéticos		
Efeito	DEV	LRT	Comp. Var.	h ² g	h²mc	Acc	M. G.
Genótipos	772,77	64,85**	5,32	0,59 +- 0,13	0,89	0,95	6,23
Parcela	713	5,08*	0,47				
Resíduo			3,17				
Mod. Comp.	707,92						
Blocos		224,64**					

DEV: Valores de deviance; LRT: Teste da razão de verossimilhança (Qui-quadrado); Mod. Comp.: Modelo completo; Comp. Var.: Componente de variância; h²g: herdabilidade de parcelas individuais no sentido amplo; h²mc: herdabilidade entre médias de genótipos, assumindo ausência de perda de parcelas; Acc: acurácia da seleção de genótipos, assumindo ausência de perda de parcelas; M. G.: Média geral.** significativo pelo teste LRT, considerando 1% de probabilidade pelo teste de x^2 . não significativo.

TABELA 15. (Continuação) Análise de deviance (ANADEV) comprimento das inflorescências (CI) para híbridos intraespecíficos de *B. decumbens* nos canteiros no segundo ano de produção.

CI							
ANADEV				Parâmetros	genéticos		
Efeito	DEV	LRT	Comp. Var.	h²g	h²mc	Acc	M. G.
Genótipos	755,15	32,02**	8,16	0,55 +- 0,12	0,76	0,87	11,34
Parcela	855,67	132,55**	4,45				
Resíduo			2,33				
Mod. Comp.	723,13						
Blocos		366,99**					

A acurácia da caracterização morfológica das inflorescências variou de 83 a 91%, sendo considerada satisfatória e classificada como de elevada magnitude (Resende & Duarte, 2007). Os efeitos genótipos e parcela foram significativos em todos os caracteres, exceto para número de sementes por racemo, que não apresentou diferença no efeito parcela. As estimativas de herdabilidade entre médias de genótipos (h²mc) apresentaram elevada magnitude, ultrapassando 0,50 (Tabela 15).

Comparando o BLUP dos caracteres morfológicos, a cv. Marandu se posicionou em segundo, primeiro e décimo segundo lugar em número de sementes por inflorescência (NSIT), número de sementes por racemo (NSR) e número de racemos (NRAC), respectivamente. No entanto, a cultivar não sobressaiu ao genótipo R120 para a variável NSIT. Os genótipos R120, R126, R181, R091, T026, T054, R110, R041, S036 e T012 apresentaram maior BLUP em relação à testemunha cv. Marandu, apresentando ganho em relação ao número de racemos (NRAC). O genótipo R120 se destacou tanto no número de sementes por inflorescência (NSIT) como número de racemos (NRAC), assumindo a primeira posição nessas duas variáveis componentes da produção de sementes e, este fato, pode ser um indicativo promissor para esse potencial de produção (Tabela 16).

Na Tabela 17, a testemunha cv. Marandu ocupou a primeira posição, tanto para comprimento dos racemos (CR) como para comprimento das inflorescências (CI). Contudo, aparentemente, um caracter não influencia o outro, uma vez que o genótipo R120 assume a segunda colocação em comprimento de inflorescência e seus racemos têm o décimo menor comprimento.

TABELA 16. Valores genotípicos preditos (BLUP) dos 44 híbridos (Gen.), média fenotípica (M. F.), limite inferior (LI) e superior (LS) do intervalo de confiança para os valores genotípicos (BLUP), e ganho de seleção (GS%) considerando 30, 20 e 10% de intensidade de seleção para os caracteres número de semente por inflorescência (NSIT), número de sementes por racemo (NSR) e número de racemos (NRAC) para híbridos de *B. decumbens* avaliados nos canteiros no segundo ano de produção. Campo Grande - MS, 2014.

	, para n	1011405	. D. acc	· · · · · · · · · · · · · · · · · · ·	avanado		CHOS II	o seguine	io uno c	ie prod	uçuo. C	allipo Gra	ilac iv	10, 2011	•		
NSIT						NSR						NRAC					
Ordem	Gen	BLUP	LI	LS	M. F.	Ordem	Gen	BLUP	LI	LS	M. F.	Ordem	Gen	BLUP	LI	LS	M. F.
1	R120	201,5	174,53	228,48	211,31	1	Mar	47,61	43,28	51,94	49,42	1	R120	6,12	5,75	6,5	6,5
2	Mar	189,63	162,66	216,61	197,69	2	T012	36,83	32,5	41,17	37,48	2	R126	5,3	4,93	5,68	5,5
3	R181	160,27	133,3	187,25	164	3	S031	35,57	31,24	39,9	36,09	3	R181	5,3	4,93	5,68	5,5
4	R091	151,07	124,1	178,05	153,44	4	S036	33,5	29,17	37,84	33,8	4	R091	4,89	4,52	5,27	5
5	T012	150,36	123,39	177,34	152,63	5	C001	32,75	28,41	37,08	32,96	5	T026	4,89	4,52	5,27	5
6	S036	148,95	121,97	175,92	151	6	R120	31,78	27,45	36,11	31,89	6	T054	4,89	4,52	5,27	5
7	R126	147,69	120,72	174,67	149,56	7	R091	30,7	26,36	35,03	30,69	7	R110	4,49	4,11	4,86	4,5
8	T026	140,34	113,37	167,32	141,13	8	R041	30,21	25,88	34,54	30,15	8	R041	4,49	4,11	4,86	4,5
9	R110	134,3	107,32	161,27	134,19	9	R181	29,93	25,6	34,26	29,84	9	S036	4,49	4,11	4,86	4,5
10	R041	134,08	107,1	161,05	133,94	10	R110	29,78	25,45	34,12	29,68	10	T012	4,49	4,11	4,86	4,5
11	S031	125,96	98,99	152,94	124,63	11	X072	29,69	25,36	34,03	29,58	11	R124	4,08	3,7	4,45	4
12	X072	120,46	93,49	147,44	118,31	12	B006	28,67	24,34	33	28,44	12	Mar	4,08	3,7	4,45	4
13	T054	119,48	92,51	146,46	117,19	13	T026	28,47	24,14	32,81	28,23	13	X072	4,08	3,7	4,45	4
14	C001	118,56	91,58	145,53	116,13	14	R126	27,77	23,43	32,1	27,44	14	B006	3,67	3,29	4,04	3,5
15	B006	104,99	78,02	131,97	100,56	15	X030	27,15	22,82	31,48	26,76	15	C001	3,67	3,29	4,04	3,5
16	X030	101,35	74,37	128,32	96,38	16	Y021	25,11	20,78	29,44	24,5	16	S031	3,67	3,29	4,04	3,5
17	R124	100,09	73,12	127,07	94,94	17	R124	24,24	19,91	28,58	23,54	17	X030	3,67	3,29	4,04	3,5
18	Y021	81,41	54,44	108,39	73,5	18	T054	24,15	19,82	28,48	23,44	18	Y021	3,26	2,88	3,63	3
GS%	30%	20%	10%			GS%	30%	20%	10%			GS%	30%	20%	10%		
	23	26	37				14	16	22				19	22	29		

TABELA 17. Valores genotípicos preditos (BLUP) dos melhores híbridos (Gen.), média fenotípica (M. F.), limite inferior do intervalo de confiança (LI), limite superior do intervalo de confiança (LS) e ganho de seleção (GS% em 30, 20 e 10% de intensidade de seleção) em relação a cv. Marandu quanto a comprimento dos racemos (CR) e comprimento das inflorescências (CI) para híbridos de *B. decumbens* avaliados nos canteiros no segundo ano de produção.

CR	nos cantenos		•	3		CI					
Ordem	Gen	BLUP	LI	LS	M. F.	Ordem	Gen	BLUP	LI	LS	M. F.
1	Marandu	14,87	13,38	16,36	15,38	1	Marandu	17,63	15,24	20,02	18,6
2	R181	6,88	5,39	8,37	6,92	2	R120	14,63	12,24	17,02	15,14
3	X030	6,57	5,08	8,06	6,59	3	T026	13,93	11,55	16,32	14,33
4	S036	6,5	5,01	7,99	6,51	4	T054	13,77	11,39	16,16	14,15
5	S031	6,18	4,69	7,67	6,18	5	R126	13,03	10,65	15,42	13,29
6	C001	5,98	4,49	7,47	5,97	6	S036	11,77	9,38	14,15	11,83
7	T026	5,89	4,4	7,38	5,87	7	X072	11,58	9,19	13,96	11,61
8	T012	5,83	4,34	7,32	5,8	8	R041	11,57	9,18	13,95	11,6
9	X072	5,83	4,34	7,32	5,8	9	R110	11,33	8,95	13,72	11,33
10	R120	5,79	4,3	7,28	5,76	10	S031	11,14	8,76	13,53	11,11
11	R041	5,67	4,18	7,16	5,63	11	R091	10,99	8,6	13,38	10,94
12	T054	5,55	4,06	7,04	5,51	12	R124	10,42	8,04	12,81	10,28
13	R110	5,48	3,99	6,97	5,43	13	T012	10,25	7,86	12,64	10,08
14	B006	5,45	3,96	6,94	5,41	14	C001	10,18	7,8	12,57	10,01
15	R124	5,45	3,96	6,94	5,4	15	B006	9,52	7,13	11,9	9,24
16	R126	5,19	3,7	6,68	5,13	16	X030	8,09	5,7	10,47	7,59
17	Y021	4,66	3,17	6,15	4,56	17	R181	7,88	5,5	10,27	7,35
18	R091	4,42	2,93	5,91	4,31	18	Y021	6,38	3,99	8,76	5,61
GS%	30%	20%	10%			GS%	30%	20%	10%		
-	12	14	17				22	26	30		

Os híbridos avaliados para as variáveis de segundo ano de peso de sementes puras (SP) e peso de sementes vazias (EV) em canteiro não apresentaram variabilidade genética significativa para ANADEV. Assim, esses caracteres foram submetidos à análise de variância em delineamento em blocos ao acaso SAS 9.3 (SAS Institute Inc., 2012) e a comparação de médias pelo teste de Scott-Knott, utilizando o programa Genes (Cruz, 2009), conforme Tabela 18.

Tabela 18. Peso de sementes puras (SP), peso de sementes vazias (EV) e percentagem de sementes vazias (%EV) produzidas no canteiro para híbridos intraespecíficos de *B. decumbens* avaliados durante o segundo ano de produção.

Genótipo	SP ¹ (g.m ⁻²)	EV ¹ (g.m ⁻²)	%EV
B006	0,30d*	9,47b	96,93
C001	49,27a	$38,40^{a}$	43,80
Marandu	23,95b	14,59b	37,86
R041	1,54c	11,59b	88,27
R091	0,07d	11,25b	99,38
R110	0,05d	4,53c	98,91
R120	1,12c	10,17b	90,08
R124	0,32d	9,29b	96,67
R126	0,10d	10,12b	99,02
R181	0,00d	5,70c	100,00
S031	0,16d	17,39b	99,09
S036	0,47d	8,23c	94,60
T012	0,55d	15,06b	96,48
T026	0,06d	3,81c	98,45
T054	0,16d	3,71c	95,87
X030	0,82c	4,48c	84,53
X072	0,00d	2,71c	100,00
Y021	0,57c	7,64c	93,06
CV(%)	31,50	26,70	

¹Comparação de médias pelo teste de Scott-Knott a 5% de probabilidade. Dados transformados (x+0,5)^{1/2}. Os dados da tabela são originais.

Adicionalmente, efetuou-se a análise de correlação entre as variáveis componentes da produção de sementes e de qualidade física e fisiológica (Tabela 19).

^{*}Médias seguidas pela mesma letra, nas colunas, não diferem entre si pelos testes de comparação de médias.

Tabela 19. Resultados de correlação fenotípica entre pureza física (Pureza%), número de sementes degranadas (NSD), número de pedicelos (NP), número de primórdios de sementes (PRIM), número de perfilhos reprodutivos (PR), número de perfilhos vegetativos (PV), peso de sementes puras (SP), viabilidade pelo teste de tetrazólio (TZ), germinação (G%), peso de mil sementes (PMS), número de racemos (NRAC), peso de sementes vazias (EV) e peso de sementes colhidas (SMT) para híbridos de *Brachiaria decumbens*, avaliados nos canteiros durante o segundo ano de produção.

	Pureza%1	NSD¹	NP¹	PRIM ²	PR ²	PV ²	SP ²	Pureza% ²	TZ^2	G% ²	PMS ²	NRAC ²	EV	SMT
Pureza%		0,0194*	-0,0884	-0,1832	0,1438	0,1252	0,5638	0,7463	-0,019	0,3901	0,9572	-0,1393	0,3381	0,37488
NSD			0,8235	-0,2166	-0,1145	-0,1305	0,0946	0,1913	0,0768	0,3075	0,6824	0,0949	,0,1586	0,1549
NP				0,3753	-0,1458	-0,2260	0,0472	0,1252	-0,3201	0,1601	0,6318	0,3459	0,1895	0,1770
PRIM					-0,0648	-0,1776	-0,0720	-0,0960	-0,3845	-0,2204	0,0255	0,4210	0,0623	0,0474
PR						-0,3084	0,7004	0,5414	0,5045	-0,4676	-0,2954	-0,3218	0,6035	0,6317
PV							-0,1920	-0,1550	0,1778	-0,1411	0,2058	-0,0371	-0,2122	-0,2155
SP								0,9112	0,2769	-0,5265	0,0817	-0,2080	0,7545	0,8050
Pureza%									0,0394	-0,1362	0,6881	-0,2403	0,5962	0,6510
TZ										-0,2602	-0,2444	-0,469	0,3623	0,3546
G%											0,5789	0,3184	-0,5449	-0,5481
PMS												0,1009	-0,3008	-0,2534
NRAC													-0,2033	-0,2094
\mathbf{EV}														0,9967
SMT														

¹Híbridos de *B. decumbens* avaliados nos coletores de sementes durante o segundo ano de produção. ²Híbridos de *B. decumbens* avaliados nos canteiros durante o segundo ano de produção.

^{*}Significativo a 1% de probabilidade pelo coeficiente de Pearson.

Os híbridos apresentaram respostas similares para as variáveis peso de sementes puras (SP) e peso de sementes vazias (EV) para os diferentes genótipos (Tabela 18), variáveis essas que apresentaram correlação em nível de 75% (p<0,01) entre si (Tabela 19). O híbrido C001 apresentou os maiores valores para SP, sendo superado apenas por Marandu. Para EV, C001 e Marandu apresentaram os melhores valores, de forma que o percentual de sementes vazias foram os menores para os referidos genótipos, de 43,80% e 37,86%, respectivamente. Os demais genótipos apresentaram até 100% de sementes vazias dentre as sementes produzidas.

A produção em elevada magnitude de sementes vazias em híbridos é muito comum e isso pode ocorrer em função do abortamento das flores pelo cruzamento genético (França, 2011), ou no caso desse trabalho, também pela infestação por cigarrinhas-das-pastagens que pode prejudicar o desenvolvimento da planta e consequentemente a produção de sementes.

Um dos objetivos da análise de correlação foi verificar a possibilidade de selecionar uma ou mais variáveis componentes da produção de sementes que fossem passíveis de utilização como indicadoras para predizer o potencial de produção e, assim, possibilitar o aumento da velocidade de seleção de genótipos pelos programas de melhoramento.

O número de perfilhos reprodutivos (PR), avaliado quando do início da formação desses perfilhos, antes do início da formação das primeiras panículas (inflorescências), foi correlacionado com peso de sementes puras (SP) nos canteiros em nível de 70% (p<0,01) (Tabela 19), indicando que a variável pode ser utilizada para predizer a produção antes mesmo do início do florescimento das plantas.

3.4. Conclusões

A produção de sementes puras excedeu à produção de sementes vazias, que pode ter ocorrido em função da ocorrência de cigarrinhas-das-pastagens, em função do baixo potencial para produção de sementes dos genótipos ou mesmo por anomalias genéticas em função da hibridização.

Todos os genótipos avaliados apresentaram juvenilidade, com adiantamento de degrana no segundo ano de avaliações em relação ao primeiro.

As estimativas de herdabilidade entre médias de genótipos foram consideradas de média a elevada magnitude para a maioria das variáveis analisadas, indicando que grande parte da variação observada entre os híbridos foi pelas causas genéticas.

Algumas variáveis como número de primórdios de sementes (PRIM), número de perfilhos vegetativos (PV) e germinação (G%) apresentaram estimativas de menor magnitude de herdabilidade. Baixos valores de herdabilidade repercutem em maior dificuldade na seleção de genótipos superiores.

Não foi verificada variabilidade genética entre os híbridos para peso de sementes puras (SP) dos canteiros entre os genótipos nas avaliações do segundo ano, dificultando a seleção de genótipos superiores.

Levando em consideração os caracteres de potencial produtivo de sementes e de biomassa, os genótipos C001, T012, R091, S036 e R124 apresentaram os maiores valores genotípicos dentre os dez melhores híbridos testados para os caracteres de potencial produtivo de sementes SP e PR. Os genótipos R041 e Y021 ficaram entre os dez melhores híbridos para SP, PR e PV, simultaneamente.

O ganho de seleção (GS%), em relação à média da população, variou de 103 a 601% para as variáveis analisadas, sendo a maior percentagem para peso de sementes puras (SP) dos canteiros do segundo ano de produção, com ganhos de 416 e 601%, considerando 20 e 10% de intensidade de seleção, respectivamente. Quanto maior o ganho de seleção em relação à média população maior o progresso na seleção de genótipos superiores.

Houve correlação (0,70) entre número de perfilhos reprodutivos (PR) e peso de sementes puras (SP) nos canteiros do segundo ano de produção, (p<0,01), que pode ser utilizado como parâmetro para a estimativa do potencial de produção de sementes puras, antes mesmo do início do florescimento.

3.5. Referências bibliográficas

ARAÚJO, S.A.C.; DEMINICS, B.B.; CAMPOS, P.R.S.S. Melhoramento genético de plantas forrageiras tropicais no Brasil. **Archivos de zootecnia**, v.57, p.61-76, 2008.

BARRIOS, S.C.L. **Proposta:** Melhoramento genético e desenvolvimento de cultivares de *Brachiaria* spp. visando à sustentabilidade da produção pecuária. Macroprograma 2. Linha temática: Desenvolvimento de cultivares de forrageiras tropicais para a diversificação e a sustentabilidade da produção animal em pasto – CULTIFOR. Chamada: 01/2014. Propostas para arranjos aprovados. Ciclo 5.

- BRASIL. Ministério da Agricultura, Pecuária e Abastecimento: Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Brasília: MAPA/ACS, 2009.
- CRUZ, C.D. Programa Genes: aplicativo computacional em genética e estatística versão 7.0. Viçosa: UFV, 2009.
- CRUZ, P.G. Produção de forragem em *Brachiaria brizantha*: adaptação, geração e avaliação de modelos empíricos e mecanicistas para estimativa do acúmulo de forragem. 2010. 103p. Tese (Doutorado) Escola superior de Agricultura Luiz de Queiroz. Piracicaba.
- FRANÇA, L.V. **Fatores ambientais na produção de sementes de híbridos interespecíficos de** *Brachiaria*. 2011. 129p. Tese (Doutorado) Universidade Federal de Pelotas, Pelotas, 2011.
- HOPKINSON, J.M., SOUZA, F.H.D., DIULGHEROFF, S., ORTIZ, A., SÁNCHEZ, M. Reproductive physiology, seed production, and seed quality of *Brachiaria*. In: MILES, J. W., MAASS, B.L., VALLE, C.B. (Ed.): *Brachiaria*: biology, agronomy and improvement. Campo Grande: Embrapa Gado de Corte, 1996. p.124-140.
- KARIA, C.T.; DUARTE, J.B.; ARAÚJO, A.C.G. **Desenvolvimento de cultivares do gênero** *Brachiaria* (**trin.**) **Griseb. no Brasil**. Planaltina: Embrapa Cerrados, 2006. (Embrapa Cerrados. Documentos, 163).
- KÖPPEN, W.; GEIGER, R. Klimate der Erde. Gotha: Verlag Justus Perthes. 1928.
- MATEUS, R.G. **Desempenho agronômico e resistência às cigarrinhas-das-pastagens de híbridos de** *Brachiaria decumbens*. 2014. 51p. Dissertação (Mestrado) Universidade Estadual de Mato Grosso Do Sul. Aquidauana, 2014
- MATIAS, F.I. Desempenho de híbridos intraespecíficos de *Brachiaria decumbens* desenvolvidos por seleção recorrente recíproca. 2015. 77p. Dissertação (Mestrado) Universidade Estadual Paulista. Jaboticabal, 2015.
- MELO, L.A. NETO, S.; S. S.; VILLA NOVA, N. A.; REIS, P. R. Influência de elementos climáticos sobre a população de cigarrinhas-das-pastagens. **Pesquisa Agropecuária Brasileira**, v.19, n.1, p.9-19, 1984.
- RESENDE, M.D.V. **O Software Selegen-Reml/Blup**. Campo Grande: Embrapa Gado de Corte, 2006. 299p. (Embrapa Gado de Corte. Documentos).
- RESENDE, M.D.V.; DUARTE, J. B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. **Pesquisa Agropecuária Tropical**, v.37, n.3, p.182-194, 2007.
- RÔDAS, P.L.; VALÉRIO, J.R.; TORRES, F.Z.V.; SILVA, L.C.; ARAUJO NETO, A.; OLIVEIRA, M.C.M. Avaliação de híbridos intraespecíficos de *Brachiaria decumbens* quanto à resistência à cigarrinha-das-pastagens *Deois flavopicta* (Hemiptera:

Cercopidae). In: CONGRESSO BRASILEIRO DE ENTOMOLOGIA, 24., 2012, Curitiba. **Anais...**Curitiba: CBE, 2012.

SAS INSTITUTE. SAS software 9.3. Cary: Statistical Analysis System Institute, 2012.

SILVA, L.C.; VALÉRIO, J.R.; TORRES, F.Z.V.; RÔDAS, P.L.; OLIVEIRA, M.C.M. Avaliação de híbridos intraespecíficos de *Brachiaria decumbens* (Griseb) quanto ao nível de antibiose à cigarrinha-das-pastagens *Deois flavopicta* (Stal) (Hemiptera: Cercopidae). In: CONGRESSO DE INICIAÇÃO CIENTÍFICA EM CIÊNCIAS AGRÁRIAS, BIOLÓGICAS E AMBIENTAIS - CICAM, 10., 2012, São Paulo. **Anais...**São Paulo: IBSP, 2012.

SOUZA, M. A. **Fenologia e morfologia reprodutivas de ecótipos de** *Brachiaria* **spp.** Piracicaba, 1995. 89p. Dissertação (Mestrado) - Escola superior de Agricultura Luiz de Queiroz. Piracicaba, 1995.

STÜR, W.W.; HUMPHREYS, L.R. Buring and citting management and the formation of seed yield in *Brachiaria decumbens*. **Journal of Agricultural Science**, v.1, n.3, p.669-672 1988.

VALÉRIO, J.R.; TORRES, F.Z.V.; WEIS, G.M.; LIRA, E.C.; DE PAULA, W.V.F.; OLIVEIRA, M.C.M. Seleção de híbridos intraespecíficos da espécie *Brachiaria decumbens* com base no nível de antibiose à cigarrinha-das-pastagens *Notozulia entreriana* (Hemiptera: Cercopidae). In: REUNIÃO ANUAL DO INSTITUTO BIOLÓGICO DE SÃO PAULO - RAIB, 27., 2014a, São Paulo. **Anais...**São Paulo: Instituto Biológico de São Paulo, 2014a.

VALÉRIO, J.R.; TORRES, F.Z.V.; WEIS, G.M.; LIRA, E.C.; DE PAULA, W.V.F.; OLIVEIRA, M.C.M. Seleção de híbridos intraespecíficos da espécie *Brachiaria decumbens* com base no nível de antibiose à cigarrinha-das-pastagens *Notozulia entreriana* (Hemiptera: Cercopidae). IN: REUNIÃO ANUAL DO INSTITUTO BIOLÓGICO DE SÃO PAULO - RAIB, 27., 2014b, São Paulo. **Anais...**São Paulo: Instituto Biológico de São Paulo, 2014b.

VALLE, C.B.; JANK, L.; RESENDE, R. M. S. O melhoramento de forrageiras tropicais no Brasil. **Revista Ceres**, v.56, n.4, p.460-472, 2009.

VERZIGNASSI, J.R. Inovações tecnológicas para produção de sementes de forrageiras tropicais nativas e exóticas. Edital MCT/CNPq/FNDCT/FAPs/MEC/CAPES/PRO-CENTRO-OESTE N° 031/2010. Processo: 564408/2010-7.

4. APÊNDICES

APÊNDICE A. Valores de peso de sementes puras (SP), peso de sementes vazias (EV), pureza física (Pureza) e germinação (G%) de híbridos de *B. decumbens* avaliados no primeiro ano de produção.

Gen.	SP	EV	PF	G%	Gen.	SP	EV	Pureza	G%
	$(\mathbf{g.m}^{-2})$	$(g.m^{-2})$	(%)			$(\mathbf{g.m}^{-2})$	(g.m ⁻²)	(%)	
A020	35,16	97,99	26,41	14	A044	11,30	39,70	22,16	23
A030	26,32	113,57	18,81	15	B009	25,92	74,39	25,84	9
A033	25,19	79,58	24,04	9	B010	16,01	75,03	17,59	11
A023	26,29	96,92	21,34	16	B005	9,00	47,63	15,89	8
A021	18,94	85,34	18,16	8	C001	4,85	73,00	6,23	14
A032	29,88	93,6	24,20	10	T038	16,76	52,88	24,07	10
A029	21,34	85,57	19,96	21	A002	17,50	31,44	35,76	7
A027	31,51	109,85	22,29	13	A029	12,14	85,24	12,47	11
A019	27,17	84,20	24,40	12	C001	15,36	67,44	18,55	5
A026	24,62	104,3	19,10	17	A044	16,05	75,05	17,62	30
A025	22,14	72,23	23,46	10	A025	12,00	68,82	14,85	20
A028	16,84	59,63	22,02	11	A009	16,20	42,35	27,67	8
A035	4,08	55,50	6,85	11	A027	17,3	45,70	27,46	8
A031	9,95	63,65	13,52	16	A030	18,42	90,20	16,96	17
A007	15,41	95,03	13,95	6	B026	12,35	35,90	25,60	8
A013	14,41	65,00	18,15	12	X121	6,09	19,07	24,21	13
A005	17,40	36,55	32,25	4	A012	28,35	91,19	23,72	7
A003	24,60	61,10	28,70	10	S044	7,86	58,07	11,92	11
A015	9,53	60,10	13,69	10	A024	7,04	56,37	11,10	5
A011	13,68	34,21	28,57	4	A043	5,41	21,44	20,15	3
A017	21,30	65,44	24,56	9	A026	18,85	54,89	25,56	7
A008	16,77	51,41	24,6	11	A008	9,62	72,65	11,69	14
A001	12,65	24,60	33,96	1	A021	12,26	68,56	15,17	12
A018	7,73	24,92	23,68	4	A035	1,09	15,31	6,65	6
A004	10,38	52,66	16,47	18	A017	4,30	27,75	13,42	5
A002	7,42	30,92	19,35	5	A036	5,55	34,90	13,72	13
A042	17,58	82,29	17,60	16	A041	11,89	67,47	14,98	5
A043	17,52	70,66	19,87	6	A038	19,80	62,70	24,00	9
					R184	12,12	46,52	20,67	8

APÊNDICE B. Peso de sementes puras (SP), pureza física (Pureza), peso de sementes vazias (EV), número de sementes degranadas (NSD); número de pedicelos (NP) e número de primórdios de sementes (PRIM) de híbridos de *B. decumbens* avaliados nos

coletores de sementes avaliados no segundo ano de produção.

Gen.	SP	Pureza	EV	NSD	NP	PRIM
	$(g.m^{-2})$	(%)	$(g.m^{-2})$			
B006	0,04*	5,06	0,78	613,00	778,33	165,33
C001	0,30	31,74	0,65	726,50	859,75	133,25
Marandu	2,49	64,41	1,32	969,00	1069,50	100,50
R025	**	-	-	-	-	-
R033	-	-	-	-	-	-
R041	0,04	4,51	0,78	721,00	866,75	145,75
R044	-	-	-	-	-	-
R071	-	-	-	-	-	-
R078	-	-	-	-	-	-
R087	0,81	71,25	0,33	322,00	400,00	78,00
R091	0,06	4,58	1,10	755,25	938,25	183,00
R101	-	-	-	-	-	-
R107	-	-	-	-	-	-
R110	0,02	2,14	0,80	688,25	803,75	115,50
R120	0,42	21,53	1,00	753,50	1194,25	440,75
R124	0,10	12,87	0,63	662,50	714,75	52,25
R126	0,31	23,26	0,74	682,00	864,25	182,25
R144	-	-	-	-	-	-
R181	0,01	0,60	1,29	1160,75	1302,00	141,25
S018	-	-	-	-	-	-
S031	0,01	0,96	0,97	759,75	1054,25	294,50
S036	0,03	2,74	1,07	783,75	898,25	114,50
T005	-	-	-	-	-	-
T012	0,04	4,90	0,74	686,50	887,25	200,75
T026	0,01	1,55	0,75	726,50	844,00	117,50
T054	0,02	5,83	0,36	393,25	544,25	151,00
X030	0,20	13,51	0,96	826,00	887,00	61,00
X072	0,02	1,81	0,82	686,25	847,50	161,25
X117	0,04	2,48	0,82	715,00	892,00	177,00
Y021	0,06	12,69	0,48	488,50	536,00	47,50

^{*}médias de duas repetições com duas observações por parcela.

^{**}não houve produção de perfilhos reprodutivos, não proporcionando a produção de sementes.

APÊNDICE C. Número de perfilhos reprodutivos (PR), número de perfilhos vegetativos (PV), pureza física (Pureza), viabilidade pelo teste de tetrazólio (TZ), germinação (G%), peso de mil sementes (PMS), número de racemo (NRAC) e peso de sementes colhidas de híbridos de *B. decumbens* avaliados nos canteiros durante o segundo ano de produção. (2014)

Gen.	PR	PV	SP	Pureza	TZ	G%	PMS	NRAC	SMT
			$(g.m^{-2})$	(%)	(%)		(g)		$(g.m^{-2})$
B006	36,00*	43,25	0,30	0,28	-	-	-	3,50	38,50
C001	144,25	26,50	49,27	12,69	89,00	2,75	4,15	3,50	26,50
Marandu	36,50	36,75	23,95	12,96	44,50	8,25	6,13	4,00	26,00
R025	**	-	-	-	-	-	-	-	-
R033	-	-	-	-	-	-	-	-	-
R041	29,50	44,50	1,54	1,16	38,89	2,00	2,81	4,50	17,00
R044	-	-	-	-	-	-	-	-	-
R071	-	-	-	-	-	-	-	-	-
R078	-	-	-	-	-	-	-	-	-
R087	13,00	57,50	-	-	-	-	-	-	41,00
R091	72,50	22,50	0,07	0,04	-	-	-	5,00	46,00
R101	-	-	-	-	-	-	-	-	-
R107	-	-	-	-	-	-	-	-	-
R110	21,25	52,00	0,05	0,13	-	-	-	4,50	28,50
R120	22,25	46,75	1,12	1,20	59,11	-	-	6,50	22,50
R124	50,00	24,75	0,32	0,34	-	-	-	4,00	22,00
R126	23,50	55,75	0,10	0,10	-	-	-	5,50	39,00
R144	-	-	-	-	-	-	-	-	-
R181	16,00	31,00	0,00	0,00	-	-	-	5,50	34,00
S018	-	-	-	-	-	-	-	-	-
S031	33,75	36,00	0,16	0,05	-	-	-	3,50	31,50
S036	30,25	37,75	0,47	0,46	80,77	-	-	4,50	17,00
T005	-	-	-	-	-	-	-	-	-
T012	29,00	41,75	0,55	0,28	57,14	-	-	4,50	38,00
T026	23,00	58,00	0,06	0,15	-	-	-	5,00	18,50
T054	28,25	45,5	0,16	0,41	-	-	-	5,00	27,50
X030	25,25	65,25	0,82	1,82	80,00	-	-	3,50	34,50
X072	25,25	41,00	0,00	0,00	-	-	-	4,00	27,50
X117	-	-	-	-	-	-	-	-	-
Y021	70,00	62,50	0,57	0,77	-	-	-	3,00	32,50

^{*}médias de duas repetições com duas observações por parcela.

^{**}não houve produção de perfilhos reprodutivos, não proporcionando a produção de sementes.

APÊNDICE D. Número sementes por inflorescência (NSIT), número de sementes por racemo (NSR), comprimento dos racemos (CR) e comprimento das inflorescências (CI) de híbridos de *B. decumbens* avaliados nos canteiros durante o segundo ano de produção.

Gen.	NSIT	NSR	CR	CI
B006	$100,\!56^*$	28,50	5,40	9,24
C001	116,12	32,90	5,96	10,01
Marandu	197,69	49,60	15,38	18,60
R025	**	-	-	-
R033	-	-	-	-
R041	133,94	30.19	5,63	11,60
R044	-	-	-	-
R071	-	-	-	-
R078	-	-	-	-
R087	-	-	-	-
R091	153,44	30,80	4,31	10,94
R101	-	-	-	-
R107	-	-	-	-
R110	134,19	30,40	5,43	11,33
R120	211,31	32,80	5,76	15,14
R124	94,94	23,30	5,40	10,28
R126	149,56	27,40	5,13	13,29
R144	-	-	-	-
R181	164,00	29,80	6,92	7,35
S018	-	-	-	-
S031	124,62	36,20	6,18	11,11
S036	151,00	33,90	6,51	11,83
T005	-	-	-	-
T012	152,62	34,50	5,80	10,08
T026	141,12	28,20	5,87	14,33
T054	117,19	23,40	5,51	14,15
X030	96,34	26,80	6,58	7,59
X072	118,31	29,80	5,80	11,61
X117	- -	-	-	- -
Y021	73,50	24,40	4,56	5,61

^{*}médias de duas repetições com duas observações por parcela.

^{**}não houve produção de perfilhos reprodutivos, não proporcionando a produção de sementes.

APÊNDICE E. Dias compreendidos entre início do florescimento (IF), pleno florescimento (PF), início da degrana (ID), fim da degrana (FD), e data de colheita (DC) de híbridos de *B. decumbens* avaliados no segundo ano de produção.

Gen.	IF-PF	PF-ID	PF-FD	ID-FD	PF-DC
B006	8,00*	16,25	36,00	19,25	37,00
C001	4,50	13,00	48,50	36,50	26,00
Marandu	6,50	5,50	59,00	51,00	25,00
R025	12,00	-	-	-	-
R033	**	-	-	-	-
R041	-	13,50	55,00	42,50	16,00
R044	11,50	-	-	-	-
R071	5,00	-	-	-	-
R078	-	-	-	-	-
R087	5,50	6,50	36,50	29,50	-
R091	6,50	13,50	73,00	58,50	44,00
R101	5,00	-	-	-	-
R107	17,00	-	-	-	-
R110	10,00	13,50	34,00	19,50	27,50
R120	6,00	20,00	58,00	39,00	21,50
R124	10,00	7,00	38,50	29,50	21,00
R126	8,50	17,00	40,00	22,50	38,00
R144	-	-	-	-	-
R181	10,00	20,00	48,50	26,50	33,00
S018	2,50	-	-	-	-
S031	5,00	10,00	32,50	24,50	31,00
S036	6,50	17,00	49,00	32,50	16,00
T005	6,00	-	-	-	-
T012	5,00	24,50	35,00	31,50	37,00
T026	9,50	12,00	56,50	31,00	18,00
T054	6,50	12,50	28,50	14,00	27,00
X030	7,50	20,50	57,00	34,50	33,50
X072	5,00	13,00	38,00	23,00	27,50
X117	6,00	15,00	52,00	38,50	-
Y021	10,00	13,50	41,00	27,00	31,00

^{*}médias de duas repetições com duas observações por parcela.

^{**}não houve produção de perfilhos reprodutivos, não proporcionando a produção de sementes.